
Vol.:(0123456789)

Automated Software Engineering (2023) 30:9
https://doi.org/10.1007/s10515-022-00373-7

1 3

Freeze‑and‑mutate: abnormal sample identification for DL
applications through model core analysis

Huiyan Wang1,2 · Ziqi Chen1,2 · Chang Xu1,2

Received: 28 August 2022 / Accepted: 27 November 2022 / Published online: 18 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Deep learning (DL) applications, representing an emerging form of new software,
are gaining increasing popularity by their intelligent and adaptive services. However,
their service reliability depends highly on the prediction accuracy of their internally-
integrated DL models. In practice, DL models are often observed to suffer from ill
predictions upon abnormal inputs (e.g., adversarial attacking samples, out-of-distri-
bution (OOD) samples, and etc.), and this could easily lead to unexpected behaviors
or even catastrophic consequences (e.g., system crash). One promising way to guard
the application reliability is to reveal such abnormal inputs in time before they are
fed to the DL models integrated in the concerned applications. Then remedy actions
(e.g., discarding or fixing these inputs) can be done to protect applications from act-
ing abnormally. Existing work addressed this revealing problem by either making
sample distance-comparison based analysis or generating sufficient model mutants
for comparative analysis. However, such treatments caused a restricted focus on
samples only, while overlooking the DL models themselves, or had to analyze mas-
sive mutants, incurring non-negligible overheads to applications. In this article, we
propose a novel approach, NetChopper, to conducting a core analysis on the target
DL model, and then partitioning it into two parts, one associating closely with the
training knowledge being the model core (expected to be important and thus stable),
and the other being the remaining part (expected to be immaterial and thus change-
able). Based on such partitioning, NetChopper proceeds to preserve (or freeze) the
model core, but mutate the remaining part to produce only a small number of model
mutants. Later, NetChopper becomes able to reveal abnormal inputs from normal
ones by exploiting these model-relevant and light-weight mutants only. We experi-
mentally evaluated NetChopper by widely-used DL subjects (e.g., MNIST+LeNet4,
and CIFAR10+VGG16) and typical abnormal inputs (e.g., adversarial and OOD
samples). The results reported NetChopper ’s promising AUROC scores in revealing
the abnormal degrees of inputs, generally and stably outperforming, or comparably
effective as, state-of-the-art techniques (e.g., mMutant, Surprise, and Mahalanobis),

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00373-7&domain=pdf

 Automated Software Engineering (2023) 30:9

1 3

9 Page 2 of 30

and also confirmed its high effectiveness and efficiency (with only marginal online
overhead).

Keywords Deep learning models · Abnormal sample identification · Model core
analyses · Freeze and mutate

1 Introduction

Modern applications have gained increasing popularities by deploying deep learn-
ing modules (typically by DL models) to support decision-making intelligence and
adaptive services. This trend also represents an emerging form of new software
(sometimes known as “into a Software 2.0 era Karpathy 2017”). Such applications
are especially welcomed in many dynamically-interactive or human-intensive fields,
e.g., image classification (He et al. 2016), object identification (Szegedy et al. 2013),
natural language processing (Mikolov et al. 2010), autonomous driving (Bojarski
et al. 2016), and etc. Those DL-based applications (or DL applications for short)
have been typically developed with an integrated DL model for internal decision-
making in a seamless prediction cooperation way. However, unlike Software 1.0
(Karpathy 2017) (traditional programs) that are almost fully written by human pro-
grammers and have clear logic flows specified and implemented, the working logic
of Software 2.0 is implicitly embedded in numerous weight values of trained mod-
els, which are rather abstract and human-unfriendly for understanding and debug-
ging. At present, the reliability of DL models depends highly on their prediction
accuracy. Due to statistical characteristics of DL training, DL models are capable
of predicting correctly for input samples generally in most scenarios, but they could
still occasionally suffer from ill predictions for abnormal samples (Goodfellow et al.
2015), thus affecting applications’ reliable deployment at runtime and thus lead-
ing to unexpected application misbehaviors or even catastrophic consequences (Dia
2021). This problem not only undermines DL models’ general application in many,
including safety-critical, scenarios such as autonomous driving and malware detec-
tion, but also severely incurs uncontrollable reliability problems to popular DL-
based applications.

Existing work has studied this problem from the perspective of detecting adver-
sarial samples, which are considered as one of typical abnormal sample sources.
Adversarial samples could be generated by adding carefully crafted human-imper-
ceptible perturbations into original clean samples deliberately, aiming to fool cer-
tain DL models’ predictions (Goodfellow et al. 2015). Many adversarial attackers
(e.g., FGSM Goodfellow et al. 2015, C &W Carlini and Wagner 2017, DF Moosavi-
Dezfooli et al. 2016, and etc.) have exhibited a high success rate in fooling DL
models and making them predict mistakenly. Besides this direction, another typical
abnormal sample source could be out-of-distribution (OOD) samples. OOD sam-
ples, although not necessarily carrying attacking purposes, follow a distribution
essentially different from the training samples that are associated with the target DL
model, and can also make the model predict mistakenly. Such abnormal samples

1 3

Automated Software Engineering (2023) 30:9 Page 3 of 30 9

(including both adversarial and OOD ones) thus call for effective techniques to
recognize and isolate them from normal ones so as to defend the reliability of DL
applications.

To address the abnormal sample detection problem, some existing work chose
to measure and compare sample distances to distinguish them (Carrara et al. 2017;
Sitawarin and Wagner 2019; Cohen et al. 2020). However, they could suffer from
tedious and time-consuming distance comparisons and thus lack necessary effi-
ciency (Bulusu et al. 2020). Some other work proposed to dig into input samples’
incurred behaviors during their associated predictions, in order to recognize their
subtle differences. For example, mMutant (Wang et al. 2019), one piece of state-
of-the-art work along this research line, combines mutation analysis and DL test-
ing to reveal abnormal samples’ different label changing behaviors upon prepared
mutants. However, it requires typically a large number of mutants and their analy-
sis is very time-consuming, thus limiting its practical usages. Regarding such effi-
ciency requirements, there is also one line of work (e.g., Surprise Kim et al. 2019
and Mahalanobis Lee et al. 2018) that examines an input sample’s behavior through
the original model’s prediction from various granularities and inspects evidence for
being anomaly, very light-weight and thus efficient. However, to collect such evi-
dence, the existing work has to obtain a certain amount of abnormal samples in
advance for preparation, e.g., for training an additional abnormal identification clas-
sifier, and this could sometimes be infeasible in practice.

In this article, we propose a novel approach, named NetChopper, to first con-
ducting a core analysis on the given DL model, and then partitioning it into two
parts. One part is supposed to associate closely with the model’s training knowl-
edge, named model core (expected to be important and thus stable), and the other is
the remaining part (expected to be immaterial and thus changeable). Based on them,
NetChopper chooses to freeze the model core and mutate the remaining part, thus
producing a few model mutants. This process could be conducted in a model-related
and lightweight way, resulting in a set of mutants useful for later analysis to distin-
guish the behaviors of abnormal samples from those of normal samples by predic-
tion differential analysis. Thus, NetChopper ’s core analysis and core-based muta-
tion work in a generic way for model interpretation, potentially useful for model
analysis and testing problems.

To evaluate NetChopper ’s performance, we conducted experiments on two
widely-used DL subjects (MNIST+LeNet4 and CIFAR10+VGG16), and observed
that: (1) NetChopper ’s reported abnormal scores on abnormal samples and normal
samples indeed differed significantly, with AUROC scores consistently outperform-
ing, or comparably effective as, existing techniques; (2) NetChopper achieved satis-
factory and stable effectiveness in identifying abnormal samples, with an average F1
score of 0.85 and average accuracy of 0.85, (3) NetChopper also exhibited promis-
ing efficiency by taking only 0.11-1.62 minutes during its offline preparation (small
and acceptable) and 0.01–0.97 milliseconds (per sample) during its online sample
identification (extremely efficient), much preferred than existing techniques.

The remainder of this article is organized as follows. Section 2 introduces nec-
essary DL background. Section 3 presents our NetChopper approach for effec-
tively identifying abnormal inputs for DL applications. Section 4 experimentally

 Automated Software Engineering (2023) 30:9

1 3

9 Page 4 of 30

evaluates NetChopper ’s performance, and compares it to state-of-the-art tech-
niques on the effectiveness and efficiency. Then, Section 5 discusses NetChop-
per ’s potential application scenarios from a software engineering perspective.
Finally, Section 6 analyzes and compares related work in recent years, and Sec-
tion 7 concludes this article.

2 Background

2.1 Deep learning

Deep learning is a sub-field of machine learning, which refers to using deep artifi-
cial neural networks (ANN) to learn representations of data. The most commonly
used ANN is Deep neural network (DNN). A typical DNN consists of an input
layer, an output layer, and multiple hidden layers, as shown in Fig. 1a. Each layer
consists of multiple artificial neurons, following the M-P neuron model, as shown
in Fig. 1b. Typically, deep learning includes training and prediction phases.
The former one is basically responsible for assigning the most suitable learning
parameters (i.e., weights and biases), typically using the backpropagation algo-
rithm (Rumelhart et al. 1986). Then, in the prediction phase, when fed by any
input sample from the input layer, each neuron would receive signals (i.e. output
values) from the neurons in its previous layer, and carry out weighted summation
and activation operations for the final prediction, based on assigned parameters in
training.

We emphasize on the widely used convolutional neural networks (CNN),
which have been popular in many fields, e.g., computer vision, natural lan-
guage processing, and so on. In addition to the traditionally fully connected lay-
ers, a typical CNN usually has convolutional layers and pooling layers, which
are mainly responsible for feature extraction and dimension reduction. The local
receptive field and shared weights of the convolutional layers achieve the purpose
of extracting features and reducing the number of parameters, and the pooling
layer further reduces the feature dimension.

Input layer Hidden layers Output layer

(a) Basic architecture of a DNN

1

2

3

…

∑

Inputs
1

2

3

…

Output
(·)

Weights

Bias

Activation
function

(b) M-P neuron model

Fig. 1 A DNN architecture and M-P neuron model

1 3

Automated Software Engineering (2023) 30:9 Page 5 of 30 9

2.2 DL testing and abnormal sample identification

Although DL models perform excellently on many tasks, they are also observed to
suffer from uncertainty (Gal and Ghahramani 2016) and non-testability (Murphy
et al. 2007) problems. This is because different from traditional software, whose
decision logic is clearly specified by developers, the decision logic of DL models
is derived from a large number of trained parameters with low interpretability. The
poor performance of a DL model in a certain application scenario can be attributed
to a combination of factors, e.g., the design of model structure, training data, train-
ing parameters, or the application scenario is indeed abnormal to the model.

Therefore, analogous to the definition of machine learning (ML) bugs and ML
testing in (Zhang et al. 2020), a DL bug can be defined as any imperfection in a DL
item that causes a discordance between the existing and the required conditions. DL
testing can be defined as the activity designed to reveal DL bugs. In DL testing,
abnormal sample detection is a popular topic to help reveal DL bugs, since abnor-
mal samples usually work beyond the handling ability of the model. In practice,
adversarial samples and out-of-distribution (OOD) samples are two typical abnor-
mal sample sources. An adversarial example is generated by adding carefully crafted
human-imperceptible perturbations into original clean samples deliberately, aiming
to fool DL models’ predictions. An OOD sample is an input sample following a dis-
tribution different from the training samples that are associated with the target DL
model, and can also make the model predict mistakenly. Many existing techniques
are proposed to effectively identify such abnormal samples from different aspects
(Lee et al. 2018; Xu et al. 2018; Metzen et al. 2017), though there are still limita-
tions on the identification performance.

3 Our approach

3.1 Approach overview

Our approach consists of two phases, namely, an offline preparation phase and an
online identification phase, as shown in Fig. 2. Let a trained model be M and its
associated training samples be X.

NetChopper ’s first phase would: (1) explore model M with samples X to prior-
itize M’s different components (by focusing on the importance of neurons in M),
(2) based on the prioritization, partition model M into two parts, one associated
closely with the training knowledge (with respect to samples X), named model core
(expected important and stable), and the other that remains from M (expected imma-
terial and changeable), we then freeze the model core and mutate the remaining part
to produce a model mutant M′ , and finally (3) calculate the upper bound of training
samples X’s corresponding prediction differences between M and M′ as an appropri-
ate threshold to separate abnormal samples from normal samples.

With such preparations, for any new input sample, NetChopper can then con-
duct its abnormal sample identification. That is, for a given sample s, NetChopper
’s second phase would: (1) profile sample s’s prediction differences upon M and the

 Automated Software Engineering (2023) 30:9

1 3

9 Page 6 of 30

mutant M′ , (2) with the pre-calculated cutting threshold �c , determine sample s to be
“abnormal” (> 𝜃c) or “normal” (≤ �c).

We elaborate on the two phases in turn below.

3.2 Phase 1: Offline preparation phase

3.2.1 Neuron importance analysis

Considering a trained model M, and its associated training samples X, NetChopper
would first conduct a neuron importance analysis upon a selected layer. NetChopper
uses Layer-wise Relevance Propagation (LRP) (Montavon et al. 2019) method to
calculate the importance of neurons. It propagates the prediction result backward in
the neural network, by means of purposely designed local propagation rules. There
are several different LRP propagation rules, e.g., LRP-0, LRP-� , LRP-� . NetChop-
per chooses LRP-� to avoid noises and get sparser analysis results. More elaborately,
for a sample x, let j and k be neurons at two consecutive layers of the neural network,
neuron j’s LRP relevance score Rx

j
 is given by:

where ax
j
 represents the output of neuron j, wjk represents the weight between neuron

j and k, � is set to 0.25 as recommended in (Montavon et al. 2019). For training sam-
ples X, NetChopper calculates the sum of absolute values of LRP relevance scores
as the neuron importance score Imp(j) of the dataset:

Except the input and output layer, NetChopper does not restrict which layer to select.
We would study the effect of layer selections in our later evaluation.

For the model trained for classification tasks, NetChopper calculates neu-
ron importance scores separately for the subset of each class to conduct a finer

(1)Rx
j
=
�

k

ax
j
wjk

� +
∑

0,j a
x
j
wjk

Rx
k
,

(2)Imp(j) =
∑

x∈X

|Rx
j
| .

training samples

3.2.1 Importance
analysis

trained model M

3.2.2 Core-based
mutation

model mutant M’

3.2.3 Diff-threshold
analysis

predicting sample

MM’

distance

0

3.3.1 Model
difference profiling

3.3.2 Sample
identification

Offline Preparation Phase

Online Identification Phase

Fail!
Abnormal!

selected layer

Pass.
Normal.

Fig. 2 NetChopper overview

1 3

Automated Software Engineering (2023) 30:9 Page 7 of 30 9

analysis. In addition, when the training dataset is large, a randomly sampled sub-
set of the training dataset can replace the entire dataset to improve efficiency.
And for some practical cases without available training samples, NetChopper
’s offline analysis could also be fed with generally normal samples, which are
expected to be diverse and representative.

3.2.2 Core‑based mutation

In the last step, we have measured neuron importance scores in M. Based on
the prioritization of those neurons’ importance scores, NetChopper would
partition the model into two parts: one part associated closely with the train-
ing knowledge, named model core (expected to be important and thus stable),
and the remaining part (expected to be immaterial and thus changeable). Gen-
erally, NetChopper would treat those neurons with high importance scores as
“core neurons”, and extract them into the model core. To do so, NetChopper
would control the proportion of neurons in each layer that can be considered as
core neurons in practice, by setting a built-in core percentage (pcore). Then, any
neuron belonging to the model core would be “frozen”, i.e., no further muta-
tion allowed, in order to ensure that the core knowledge learned from training
can be preserved during the mutation. In practice, pcore can be empirically set to
gradually increase until a certain amount of training samples (<1%) no longer
hold their original predictions on generated mutants. In our later evaluation, we
would also investigate the impacts of different core percentages on NetChopper
’s performance.

After freezing the model core, NetChopper then arbitrarily mutates neurons
belonging to the remaining part, which are believed to be immaterial and thus
changeable, and their diverse mutations are expected to help reveal different
behaviors of abnormal samples.

One straightforward mutation treatment is to deactivate these neurons, i.e., set
their outputs to be zero, suggesting removing their corresponding influences on
the prediction. That is:

In practice, this model mutant can be implemented as inserting a mask layer after
the selected layer of the original model, where the outputs of core neurons are multi-
plied by 1 and the rest by 0.

Note that, since we analyze neuron importance scores of each class for clas-
sification models as aforementioned, the number of model mutants should be
equal to the number of classes theoretically. To reduce storage cost, when the
number of classes is large, we can implement only one mutant and store the dif-
ferent weights of the mask layer, and replace the weights.

(3)a�
j
=

{
aj j is a core neuron,

0 otherwise. //mutate

 Automated Software Engineering (2023) 30:9

1 3

9 Page 8 of 30

3.2.3 Diff‑threshold analysis

For the original model M, let one generated model mutant be M′ . In order to lever-
age the expected and unexpected behavioral differences between such two models to
help identify abnormal samples, we investigate the prediction differences of obvi-
ously normal samples (i.e., training samples with correct predictions). Specifically,
we measure the L1 distance of model outputs between M and M′ as the abnormal
score of a input sample. For a sample x, we have:

We also observe that NetChopper ’s importance calculation method are reasonable,
i.e, the neurons we mutate do not have much effect on the normal samples’ pre-
dictions in a preliminary experiment on a LeNet4 (LeCun et al. 1998) model with
MNIST (Yann 1998) dataset (see 4.2). In this case, when we mutate 10% neurons
in turn selected according to the increasing order of neuron’s importance sores
(from unimportant to important) and construct the corresponding mutants, the aver-
age Diff() score of 500 random training samples strictly increases. Especially, when
we select to mutate the most important 10% of neurons, there is an obviously huge
impact on the average Diff() score than other selections, suggesting only a small
amount of neurons might dominate such predictions. This also suggests NetChopper
’s reasonable ranking for the importance of neurons.

Note that, we do not directly adopt samples’ label changing results like existing
work (Wang et al. 2019), since NetChopper ’s mutation is quite delicate and might
not always propagate to the prediction label. After that, for all samples in M’s train-
ing (i.e., X), we can obtain a series of their Diff() values. We then extract the upper
bound of Diff() values as an appropriate threshold �c to distinguish between normal
and abnormal samples. In order not to be affected by outliers, NetChopper refers
to the calculation method of upper bound in drawing boxplots (Frigge et al. 1989).
Therefore, instead of using abnormal samples to train an additional classifier like
existing work (Kim et al. 2019; Lee et al. 2018), NetChopper obtains the thresholds
automatically.

3.3 Phase 2: Online identification phase

After generating model mutant(s) (e.g., M′), and obtaining the corresponding
threshold (e.g., �c), NetChopper can now conduct the online identification for any
collected sample. Suppose an input sample x, and NetChopper would conduct the
abnormal sample identification as follows.

3.3.1 Model difference profiling

For sample x, NetChopper can similarly collect its prediction difference i.e.,
Diff (x,M,M�) between the original model M and the model mutant M′ , as shown
in Equation 4. For classification tasks, suppose the model predicts x as class i, the

(4)Diff (x,M,M�) = ‖‖M(x) −M�(x)‖‖1 .

1 3

Automated Software Engineering (2023) 30:9 Page 9 of 30 9

difference is calculated between M and M′
i
 , i.e., the model mutant whose neuron

importance is calculated by training samples from class i. It means that despite
being predicted as class i, NetChopper can distinguish between normal class i sam-
ples and abnormal ones using the prediction differences. Therefore, unlike existing
work (Wang et al. 2019) that feeds samples into a number of mutants, each sample
only needs one model mutant to calculate the difference score in NetChopper.

3.3.2 Sample identification

After that, based on the obtained threshold for M′ (i.e., �c), and the sample x’s pre-
diction difference Diff(x, M,M�) , NetChopper can easily determine sample x to be
“abnormal” (Diff (x,M,M�) > 𝜃c) or “normal” (Diff (x,M,M�) ≤ �c).

4 Evaluation

In this section, we experimentally evaluate NetChopper and compare it to state-of-
the-art techniques (i.e., mMutant, Surprise, and Mahalanobis) for their performance
in identifying abnormal samples for DL applications.

4.1 Research questions

We aim to answer the following four research questions:
RQ1 (Distinguishing ability): How is NetChopper ’s ability to distinguish

between abnormal samples and normal samples effectively?
RQ2 (Detection effectiveness): How effective is NetChopper in identifying

abnormal samples?
RQ3 (Controlling factors): How do NetChopper ’s parameters (e.g., core per-

centage pcore , layer selection, scoring mechanism, and sampling selection) affect its
effectiveness?

RQ4 (Efficiency): How efficient is NetChopper in identifying abnormal samples
(during its offline preparation and online identification), as compared to existing
techniques?

4.2 Experimental design and setup

We introduce experimental subjects, design, and implementation in turn below.
Experimental subjects We used two popular image classification datasets in the

DL field as our experimental subjects, namely, MNIST (Yann 1998) and CIFAR10
(Krizhevsky and Hinton 2009), each associated with a state-of-the-art DL model, as
shown in Table 1. MNIST is an image database for hand-written digit classification
(with ten labels), which contains 60,000 training samples and 10,000 predicting sam-
ples for testing. Its associated DL model is LeNet4 (LeCun et al. 1998). CIFAR10 is
another image database for object recognition (also with ten labels), which contains
50,000 training samples and 10,000 predicting samples. Its associated DL model

 Automated Software Engineering (2023) 30:9

1 3

9 Page 10 of 30

is VGG16 (Simonyan and Zisserman 2015). Within the scope of our experiments,
we consider the predicting samples with correct predictions from each dataset as
“normal” (as contrast to “abnormal” ones with incorrect predictions generated from
adversarial attacking or OOD, as explained later soon).

In order to evaluate NetChopper ’s performance on abnormal sample identifica-
tion, for each dataset, we prepared two popular types of abnormal samples that have
been intensively studied in existing work (Bulusu et al. 2020), i.e., adversarial sam-
ples (as TYPE-I), and out-of-distribution samples (as TYPE-II). TYPE-I abnormal
samples could be constructed by adding carefully crafted human imperceptible per-
turbations into original samples deliberately, aiming to fool a DL model’s predic-
tion, while TYPE-II abnormal samples refer to those that are clearly under a differ-
ent distribution from that of a DL model’s training samples.

Regarding TYPE-I abnormal samples (adversarial), for each subject, we
adopted five popular adversarial attackers upon its predicting samples with cor-
rect predictions, in order to deliberately fool the concerned model by changed
predictions. These attackers are FGSM (Goodfellow et al. 2015), JSMA (Papernot
et al. 2016), C &W (�2-norm) (Carlini and Wagner 2017), DF (Moosavi-Dezfooli
et al. 2016), and BIM (Kurakin et al. 2017), used by following their typical set-
tings. We either re-implemented existing adversarial attackers by following their
publications or using their publicly available implementations if released. Con-
cerning the detailed settings, since almost all such adversarial attackers inher-
ited some internal controlling parameters, we also gave such related parameter
settings in Table 2 (by following each attacker’s general use suggestions). We

Table 1 Descriptions for
datasets and associated DL
models

Dataset # samples DL model Accuracy

MNIST 60,000/10,000 LeNet4 98.52%
CIFAR10 50,000/10,000 VGG16 92.47%

Table 2 Descriptions for TYPE-I abnormal samples

Subject Attacker Setups Attacking success (%)

MNIST FGSM � = 0.3 98.63% (9,718/9,852)
JSMA � = 1 , � = 0.1 100% (9,852/9,852)
C &W binary_search_steps=10, max_

iter=5000, initial_const=0.01
100% (9,852/9,852)

DF overshoot=0.02, max_iter=50 99.42% (9,795/9,852)
BIM � = 0.3, eps_step=0.03 100% (9,852/9,852)

CIFAR10 FGSM � = 0.02 80.86% (7,477/9,247)
JSMA � = 1 , � = 0.1 100% (9,247/9,247)
C &W binary_search_steps=10, max_

iter=5000, initial_const=0.01
100% (9,247/9,247)

DF overshoot=0.02, max_iter=50 99.94% (9,242/9,247)
BIM � = 0.01, eps_step=0.005 88.82% (82,13/9,247)

1 3

Automated Software Engineering (2023) 30:9 Page 11 of 30 9

generate TYPE-I abnormal samples by selecting those samples that can originally
be predicted correctly, but later be predicted incorrectly after the attacking. For
example, considering the MNIST subject and the FGSM attacker, 9,718 abnor-
mal samples were obtained based on all MNIST’s predicting samples with correct
predictions (9,852), suggesting an attacking success rate of 98.63%. To allevi-
ate possible threats brought by our implementations, we have confirmed that our
measured attacking success rates indeed met respective attacking abilities they
previously claimed.

Regarding TYPE-II abnormal samples (OOD), for each subject, we adopted
two OOD datasets that had been well studied in existing OOD research, namely,
FASHION_MNIST (Xiao et al. 2017) (FMNIST for short) and EMNIST (Cohen
et al. 2017) for MNIST, and CIFAR100 (Krizhevsky and Hinton 2009) and
SVHN (Netzer et al. 2011) for CIFAR10. Note that we consider all predicting
samples from these four OOD datasets as “abnormal”, since they were from other
datasets completely different from our subjects (designed even for totally differ-
ent classification tasks). We give these details in Table 3.

Experimental design We design the following independent variables to control
the experiments:

• Subject We used two subjects, each concerning a dataset and a DL model,
namely, MNIST + LeNet4, and CIFAR10 + VGG16. When with no ambiguity,
we refer to each by the dataset name only.

• Abnormal type For each subject, we generated both TYPE-I and TYPE-II
abnormal samples as explained earlier. Concerning TYPE-I abnormal samples,
we used five attackers, i.e., FGSM, JSMA, C &W, DF, and BIM. Concerning
TYPE-II abnormal samples, we leveraged FMNIST and EMNIST for MNIST,
and CIFAR100 and SVHN for CIFAR10, respectively.

• Core percentage (pcore) To investigate the impacts of NetChopper ’s different
core percentages in identifying model cores, we controlled pcore to take a value
of 0.05, 0.10, ..., or 0.95, with a pace of 0.05.

• Selected layer We investigate the impacts of different layer selections for
NetChopper. Note that for the convolution part of a CNN, we take a convolution
block as a unit to mutate, i.e., we operate on the outputs of the selected block.
For MNIST+LeNet4 which has two convolution blocks and two fully-connected
layers, we tried all the block/layers except the input and layer, namely, block1,
block2, and fc1. For CIFAR10+VGG16 which has five convolution blocks and

Table 3 Descriptions for
TYPE-II abnormal samples

Subject OOD # samples Description

MNIST FMNIST 10,000 Clothing classification
EMNIST 10,000 Digit/Letter classification

CIFAR10 CIFAR100 10,000 100 classes object recognition
SVHN 10,000 Street view recognition

 Automated Software Engineering (2023) 30:9

1 3

9 Page 12 of 30

three fully-connected layers, we evenly selected three block/layers from different
depths, namely, block2, block4, and fc1.

• Techniques We also compare NetChopper with three state-of-the-art abnormal
sample identification techniques, namely, mMutant (Wang et al. 2019), Surprise
(Kim et al. 2019), and Mahalanobis (Lee et al. 2018). Concerning mMutant,
which originally has four variants, we adopted two of its variants (mMutant-NAI
and mMutant-GF), as they exhibited the best performance (Wang et al. 2019).
Concerning Surprise, which originally has two variants (Surprise-LSA and Sur-
prise-DSA), we adopted Surprise-LSA since both variants exhibited comparable
performance (Kim et al. 2019). Mahalanobis (Lee et al. 2018) was configured
to use its original setting (Lee et al. 2018). We used original implementations of
these three techniques, or slightly adapted them to identify samples into “abnor-
mal” and “normal” two categories for experimental purposes.

The four techniques need some setups: (1) NetChopper needs to select layers for its
model mutation. We selected block1 for MNIST and block4 for CIFAR10 to gener-
ate core-based model mutants. Besides, by default, we set pcore to be 0.95 for both
subjects. We also investigated these factors’ impacts in RQ3. (2) mMutant needs
to configure a mutation degree. This parameter was set to 0.05 for MNIST and
0.005 for CIFAR10 as suggested (Wang et al. 2019). For each mMutant variant, 200
mutants were generated, and its parameters for MNIST and CIFAR10 on classifying
abnormal and normal samples were as suggested (Wang et al. 2019). (3) Surprise
(Kim et al. 2019) needs to set a variance threshold for removing neurons. It was set
to 10−5 for MNIST as suggested (Wang et al. 2019). For CIFAR10, the suggested
value 10−4 would cause “NaN” when calculating kernel density estimation score, so
we had to expand this value to 10−3 . The original article does not clarify which kind
of layer LSA is more suitable, so we similarly chose the same layer as NetChopper
for its analysis. (4) Mahalanobis (Lee et al. 2018) needs to configure a noise mag-
nitude for input enhancement. This parameter was set to 0 for simplicity. For layer
selection, we chose all blocks’ outputs to calculate Mahalanobis scores as suggested.
(5) Both Surprise (Kim et al. 2019) and Mahalanobis (Lee et al. 2018) addition-
ally need normal and abnormal samples in hand for training their internal classifiers,
and thus we randomly selected 1,000 samples (around 10% as suggested Kim et al.
2019; Lee et al. 2018) for this purpose.

As mentioned earlier, we regard the samples with correct predictions and from
original MNIST/CIFAR10’s predicting samples as “normal”, and those generated
by TYPE-I/TYPE-II treatments as “abnormal”. We mixed normal and abnormal
samples together for experiments. For example, concerning the MNIST subject and
the FGSM type, we mixed all normal samples (9,852) from MNIST’s predicting
samples with correct predictions and all generated TYPE-I abnormal samples with
wrong predictions (9,718) by FGSM together.

Then, for evaluating these techniques’ performance (effectiveness and efficiency),
we design the following metrics.

For the effectiveness, we used the area under the receiver operating character-
istic (AUROC) to measure the distinguishing ability of sample scores generated
by convention. And we measured the detection effectiveness of NetChopper by

1 3

Automated Software Engineering (2023) 30:9 Page 13 of 30 9

precision, recall, F1-score and prediction accuracy, which are commonly used in
machine learning field to measure the effectiveness of binary classifiers.

For the efficiency, we recorded the time spent by each technique on its offline
preparation overhead and online identification overhead. For example, for
NetChopper, its offline preparation overhead refers to the time spent on its model
mutant preparation, and its online identification overhead refers to the time spent
on its runtime sample analysis and identification based on the prepared model
mutants.

Implementation We conducted all experiments on a Linux server with two
Intel(R) Xeon(R) Gold 5118 CPU @2.30GHz, 10 GeForce RTX 2080Ti GPUs,
and 384GB RAMs, running Ubuntu 16.04.

4.3 Experimental results and analyses

4.3.1 RQ1 (Distinguishing ability)

This question studies NetChopper ’s ability to discriminate between abnormal
samples and normal samples corresponding its reported scores reported (i.e.,
Diff() scores). For this, we used t-test to measure how significant such differences
were in a statistical way. With the null hypothesis that “NetChopper generated
Diff() scores with no significant difference between abnormal samples and normal
samples”, we obtained a series of p-values as shown in Table 4. From the table,
one can observe that all data are far less than 0.05 for both types I and II cases.
Thus one can safely reject this hypothesis at a 95% confidence level. That is, we
believe NetChopper can produce significantly different scores between abnormal
and normal samples.

Therefore, we answer RQ1 as follows: NetChopper can produce significantly
different scores between abnormal and normal samples.

Table 4 t-test of NetChopper MNIST CIFAR10

Description t p Description t p

Normal – – Normal – –
I (FGSM) 66.04 <0.01 I (FGSM) 52.61 <0.01
I (JSMA) 43.66 <0.01 I (JSMA) 140.76 <0.01
I (DF) 84.45 <0.01 I (DF) 105.68 <0.01
I (C &W) 73.66 <0.01 I (C &W) 128.01 <0.01
I (BIM) 15.02 <0.01 I (BIM) 2.75 <0.01
II (EMNIST) 39.72 <0.01 II (EMNIST) 76.3 <0.01
II (CIFAR100) 58.96 <0.01 II (SVHN) 71.91 <0.01

 Automated Software Engineering (2023) 30:9

1 3

9 Page 14 of 30

4.3.2 RQ2 (Effectiveness)

This question studies the ability to discriminate between abnormal samples and nor-
mal samples of the abnormal scores reported by NetChopper (i.e., Diff() scores), as
compared to existing techniques. We calculated the abnormal scores on each mixed
dataset using NetChopper and three existing techniques. We list the corresponding
AUROC results in Table 5.

From the table, we observed and analyzed that: (1) in most cases, the NetChop-
per ’s abnormal scores had a strong distinguishing ability towards abnormal sam-
ples, leading to an average AUROC of 0.9809 for MNIST and 0.8837 for CIFAR10.
(2) compared to the other three techniques, on MNIST, NetChopper had a more con-
sistent performance with AUROC all greater than 0.94, while the other methods per-
formed extremely well on some datasets (e.g., mMutant-NAI got AUROC of 0.9993
on JSMA), but their worst values are as low as around 0.5. On CIFAR10, although
overall Mahalanobis slightly outperformed us on most datasets, note that its abnor-
mal scores were derived from the logistic regression classifier trained with abnormal
samples, while NetChopper did not use any abnormal samples in advance. mMu-
tant and Surprise also did pretty well in some data sets (e.g., JSMA and C &W),
but considering their relatively large overhead as studied later, they may not be that
reliable. Therefore, NetChopper had comparable performance with these compari-
son techniques on CIFAR10. (3) it is worth mentioning that all methods performed
poorly on BIM samples with CIFAR10 model. This may be related to the structure
of VGG16 and the attack intensity of BIM attack, which is worth further study.

Based on abnormal scores, NetChopper automatically calculates a threshold (�c)
to determine whether an input sample is “abnormal” or “normal”, as described in
3.2.3. This research question studies how effective NetChopper is in identifying
abnormal samples. We measured it by calculating the precision, recall, F1 score, and
prediction accuracy of NetChopper on mixed datasets, as shown in Table 6.

From Table 6, we observed that NetChopper achieved a nice balance between
the sample identification precision and recall, leading to a satisfactory F1 score of
0.86–0.92 and accuracy of 0.85–0.91 for MNIST. For CIFAR10, NetChopper also
performed well on 6 out of 7 datasets with a F1 score of 0.73–0.92 and accuracy of
0.75–0.89. NetChopper only had a poor performance on BIM dataset, which was
consistent with the result of RQ1 and has been explained. Generally, the detection
results of NetChopper were consistent with the distinguishing ability in RQ1, which
indicated that NetChopper ’s threshold analysis method is effective.

Therefore, we answer RQ2 as follows: NetChopper was generally effective in
identifying abnormal samples from normal ones, with satisfied AUROC scores, as
long as an average F1 score of 0.85 and average accuracy of 0.85, outperforming
the existing techniques.

4.3.3 RQ3 (Controlling factors)

We next study how NetChopper ’s effectiveness could be affected by its controlling
factors (i.e., core percentage pcore , layer selection, scoring mechanism, and sampling
selection for mutation).

1 3

Automated Software Engineering (2023) 30:9 Page 15 of 30 9

Ta
bl

e
5

 D
ist

in
gu

is
hi

ng
 e

ffe
ct

iv
en

es
s (

A
U

RO
C

 sc
or

e)
 o

f N
et
C
h
o
pp

er
 w

ith
 c

om
pa

ris
on

s (
C

ol
or

 T
ab

le
 o

nl
in

e)

 Automated Software Engineering (2023) 30:9

1 3

9 Page 16 of 30

Ta
bl

e
6

 D
et

ec
tio

n
eff

ec
tiv

en
es

s o
f N

et
C
h
o
pp

er
 w

ith
 c

om
pa

ris
on

s (
C

ol
or

 T
ab

le
 o

nl
in

e)

1 3

Automated Software Engineering (2023) 30:9 Page 17 of 30 9

Fig. 3 Effectiveness results of different p
core

 values for MNIST and CIFAR10

 Automated Software Engineering (2023) 30:9

1 3

9 Page 18 of 30

Core percentage We controlled to set different values to NetChopper ’s internal
core percentage pcore , which denotes the proportion of core neurons preserved in the
selected layer of the model, as well as affecting how many neurons could be left for
the mutation to generate new model mutants. We list the results in Fig 3.

From the figure, we observed that in most cases, when pcore increased, suggest-
ing that more model neurons belonging to “core” and would not be mutated, the
corresponding effectiveness metrics generally increased steeply at first then became
stable. This is understandable since when pcore was set to a small value, NetChopper
’s mutation could happen to almost any neuron in the model, and this would bring
uncontrollable impact to the model. Then when the pcore value increased, more core
neurons were preserved, and correspondingly more core knowledge learned from
training was preserved. This contributed to a controllable mutation and stable result.
As such, the impact when the pcore value was small could be a little unpredictable.
Still, when the pcore value was set over 60% , its trend started to behave similarly as
expected. From this figure, we thus set 95% as the default pcore value for our both
subjects.

By further investigating into the satisfactory pcore settings, we observe that in
those cases, training samples are all able to hold their original predictions with an
extremely high probability (no less than 99%), suggesting that the corresponding
model core can still hold the knowledge for prediction effectively. Therefore, we do
suggest that for a new scenario, in order to set a suitable pcore value, one can choose
any value that is able to incur only marginal interruption upon training samples’ pre-
dictions. We believe that this might be a suitable and automatic option for NetChop-
per ’s practical application.

Layer selection Next, we consider different layers in DL models for selection
in NetChopper. Tables 7 and 8 show the results of representative layers from dif-
ferent depths with respect to subject MNIST and CIFAR10. From these tables, we
observe that: (1) on MNIST, the effectiveness of NetChopper was sensitive to the
layer selections. For example, the F1 score and accuracy on layer fc1 was signifi-
cantly lower than those on block1 and block2. For FGSM and BIM, this sensitivity

Table 7 Effectiveness results of layer selections (MNIST)

1 p∕r∕F1∕a refers to precision/recall/F1/accuracy values
The bold values denote the largestest values for F1 and accuracy, respectively, across the three studied
layer selections

Description block1 block2 fc1
p/r/F1/acc p/r/F1/acc p/r/F1/acc

I (FGSM) 0.84/1.00/0.91/0.91 0.84/0.94/0.89/0.88 0.64/0.41/0.50/0.59
I (JSMA) 0.84/0.97/0.90/0.89 0.85/1.00/0.92/0.91 0.71/0.56/0.63/0.67
I (DF) 0.84/1.00/0.91/0.91 0.85/1.00/0.92/0.91 0.70/0.53/0.60/0.65
I (C &W) 0.84/1.00/0.91/0.91 0.85/1.00/0.92/0.91 0.69/0.50/0.58/0.64
I (BIM) 0.84/0.99/0.91/0.90 0.73/0.49/0.59/0.66 0.52/0.25/0.34/0.51
II (EMNIST) 0.83/0.89/0.86/0.85 0.83/0.87/0.85/0.84 0.65/0.42/0.51/0.59
II (FMNIST) 0.84/1.00/0.92/0.91 0.85/0.99/0.92/0.91 0.64/0.39/0.49/0.58

1 3

Automated Software Engineering (2023) 30:9 Page 19 of 30 9

was even more obvious. (2) on CIFAR10, however, the effectiveness of NetChop-
per seemed not sensitive to the layer selections, because the results were almost the
same at different depths of layers in Table 8. This may be related to the more robust
architecture of VGG16. (3) generally, for simple neural network architectures, a
lower layer is preferred. For complicated neural network architectures, NetChopper
does not restrict the layer selections.

Scoring mechanism To better investigate how NetChopper ’s core analyses
based on importance scoring truly contribute to its effectiveness, we additionally

Table 8 Effectiveness results of layer selections (CIFAR10)

The bold values denote the largestest values for F1 and accuracy, respectively, across the three studied
layer selections

Description block2 block4 fc1
p/r/F1/acc p/r/F1/acc p/r/F1/acc

I (FGSM) 0.77/0.70/0.73/0.74 0.77/0.70/0.73/0.74 0.78/0.69/0.73/0.74
I (JSMA) 0.82/1.00/0.90/0.89 0.82/1.00/0.90/0.89 0.83/1.00/0.91/0.90
I (DF) 0.82/1.00/0.90/0.89 0.82/1.00/0.90/0.89 0.83/1.00/0.91/0.90
I (C &W) 0.82/0.99/0.90/0.89 0.82/0.99/0.90/0.89 0.83/1.00/0.91/0.90
I (BIM) 0.57/0.28/0.38/0.53 0.57/0.28/0.38/0.53 0.57/0.26/0.36/0.53
II (CIFAR100) 0.82/0.88/0.84/0.83 0.82/0.88/0.84/0.83 0.82/0.85/0.84/0.83
II (SVHN) 0.83/0.95/0.88/0.87 0.83/0.95/0.88/0.87 0.84/0.94/0.89/0.87

Table 9 Detection effectiveness
of NetChopper with/without
scoring (pcore=0.8)

NetC� refers to NetChopper with opposite scoring (i.e., treat the
part of neurons with smallest Imp scores as core), and NetC� refers
to that with random scoring (i.e., treat a random part of neurons as
core)

Subject Description NetChopper NetC� NetC�

MNIST I (FGSM) 0.9615 0.3052 0.8064±0.0218
I (JSMA) 0.9933 0.1372 0.9699±0.0087
I (DF) 0.9966 0.1890 0.9497±0.0119
I (C &W) 0.9962 0.1822 0.9504±0.0121
I (BIM) 0.7617 0.2481 0.4395±0.0261
II (EMNIST) 0.9844 0.2680 0.8539±0.0156
II (FMNIST) 0.9844 0.2344 0.8655±0.0380

CIFAR10 I (FGSM) 0.8247 0.6502 0.8241±0.0031
I (JSMA) 0.9847 0.4237 0.9550±0.0034
I (DF) 0.9600 0.5445 0.9055±0.0053
I (C &W) 0.9887 0.4446 0.9186±0.0079
I (BIM) 0.5568 0.5109 0.5602±0.0023
II (CIFAR100) 0.8969 0.5939 0.9048±0.0036
II (SVHN) 0.8904 0.2718 0.9151±0.0059

 Automated Software Engineering (2023) 30:9

1 3

9 Page 20 of 30

modified its kernel scoring treatment with two typical ones, thus obtaining two
variants NetC� and NetC� . NetC� chooses the neurons with the smallest Imp
scores as core, thus working exactly opposite to our NetChopper, while NetC�
randomly chooses neurons as core. We controlled the three approaches to mutat-
ing the same amount of neurons and compared their eventual detection effective-
ness correspondingly, as shown in Table 9.

From the table, we can observe that, our original NetChopper ’s scoring
contributes greatly to its detection effectiveness. If we reverse NetChopper ’s
scoring in identifying core neurons, i.e., choose neurons with the smallest Imp
scores as core, our obtained NetC� produced much worse effectiveness, with
AUROC scores being only 0.1372–0.3052 for MNIST, and 0.2718–0.6502 for
CIFAR10, while NetChopper originally achieved 0.7617–0.9966 for MNIST, and
0.5568–0.9887 for CIFAR10. When one chooses to randomly identify core neu-
rons (represented by NetC�), the corresponding effectiveness can be improved as
compared to the worst NetC� , with AUROC being 0.4134–0.9786 for MNIST,
and 0.5579–0.9584 for CIFAR10, still worse than our original NetChopper.
Moreover, note that, NetC� may sometimes degrade into NetC� , when one acci-
dentally chooses neurons with quite small importance scores as core, exhibiting
NetC� ’s unpromising effectiveness somehow.

Practical sampling To facilitate NetChopper ’s practical usages on large sce-
narios, we additionally investigate into its effectiveness when only part of train-
ing samples were used in NetChopper to identify the core neurons. To do so, we
chose to use controlled proportions of training samples with respect to MNIST,
CIFAR10, and another larger scenario TinyImageNet (accompanied by ResNet).
Note that our sampling is balanced across different label classifications to avoid
possible bias. Results are shown in Fig. 4.

From the figure, we observe that, for simple scenarios like MNIST and
CIFAR10, taking less than 5% training samples into NetChopper ’s analyses
can already produce stable and comparable detection effectiveness, while for
some relatively larger scenarios like TinyImageNet, such ratio may increase to
around 15–20%. Still, we observe that in practical usage, training sampling can
be optional, and thus we suggest that when considering resource budgets, taking

0.9

0.92

0.94

0.96

0.98

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MNIST CIFAR10 TinyImageNet

Fig. 4 Effectiveness comparisons of NetChopper with different sampling proportions

1 3

Automated Software Engineering (2023) 30:9 Page 21 of 30 9

all training samples may be somehow infeasible for complex and large-dataset
scenarios.

As a summary, we answer RQ3 as follows: NetChopper ’s internal factors
could affect its effectiveness, and although they sometimes affect NetChopper ’s
stableness, its effectiveness generally holds.

4.3.4 RQ4 (Efficiency)

We finally evaluate NetChopper ’s efficiency in identifying abnormal samples by
focusing on its time overheads in the offline mutation preparation and online iden-
tification, and compare them to those of the other three techniques. We give the
results in Figs. 5 , 6.

From the figures, we observe that: (1) regarding the offline overhead, two mMu-
tant variants took significantly more time (3.48 and 5.17 minutes for MNIST, and
23.80 and 7.70 minutes for CIFAR10) than the other three techniques (e.g., 0.11 and
1.62 minutes for NetChopper, 0.15 and 1.07 minutes for Surprise, and 0.05 and 0.13
minutes for Mahalanobis, on MINST and CIFAR10, respectively); (2) regarding

Fig. 5 Comparisons on offline overhead (min)

Fig. 6 Comparisons on online overhead (ms)

 Automated Software Engineering (2023) 30:9

1 3

9 Page 22 of 30

the online overhead (more importantly), NetChopper performed the best by cost-
ing significantly less time than the other three techniques, which only took 0.01 and
0.97 milliseconds for MNIST and CIFAR10 per sample. This is because for each
sample, NetChopper only needs to feed it into two models (i.e., the original model
and the model mutant and obtains their prediction difference to compare with the
threshold �c . However, mMutant needs to feed it into hundreds of models. Surprise
and Mahalanobis need to obtain and operate the intermediate outputs of the model.
Therefore, they consumed more time than NetChopper. (3) summed up, NetChop-
per could be considered to both exhibit excellent efficiency (acceptable offline over-
head and marginal online overhead);

Therefore, we answer RQ4 as follows: NetChopper was very efficient with
acceptable offline overhead and only marginal online overhead, exhibiting promis-
ing potential among studied techniques.

4.4 Threat analysis and discussion

Our experiments used only two datasets, namely, MNIST and CIFAR10, and this
might threaten the external validity of our experimental conclusions. We alleviated
this threat as follows. First, our selected datasets have been typically used in relevant
research, and for each dataset, we generated rich abnormal sample types, including
five adversarial and two OOD ones, trying to make them diverse and representative.
For comparisons, we selected three latest and highly related techniques (mMutant,
Surprise, and Mahalanobis) for experimental effectiveness comparisons, representa-
tive as mutation analysis, distribution analysis, and distance analysis techniques
(from both the SE and AI communities). We believe that our experimental conclu-
sions should generally hold, and will test on diverse datasets and compare to more
techniques in future.

5 Application discussion

We discussed some of potential application scenarios of our work, especially for SE,
as follows.

Tolerating low-quality DL modules in software DL models are now being
widely used as a vital module in modern software due to their intelligent and
adaptive ability (sometimes known as “into a Software 2.0 era”), e.g., coping
with dynamic-changing environments like recognize moving objects at runtime.
However, DL models still do not promise to work perfectly especially for soft-
ware’s complex application scenarios at their deployments. Even if their perfor-
mance could be acceptable for now, application scenarios keep evolving from
time to time and that can easily cause these models to behave unexpectedly
unsatisfactorily. Typically, when a piece of software is observed to be imperfect
for deployment due to its inherited DL models, developers typically choose to
refine exist-ing DL models by retraining it or replacing it with a new one. Either
Measuring DL model deployment’s suitability for software Considering modern

1 3

Automated Software Engineering (2023) 30:9 Page 23 of 30 9

software with DL models, such software could be deployed in a complex sce-
nario, which may not have been fully anticipated or tested in advance, since a
full deployment and test can sometimes incur substantial re-source costs. Then,
based on how many samples are identified as abnormal ones, NetChopper can
be used for suggesting whether and how such software actually suits a specific
scenario. More applications of our NetChopper technique include selecting and
applying the most suitable DL model from a set of candidates during adapting a
piece of software to a target scenario, as well as optimiz-ing the assignment of
multiple DL models to multiple application scenarios.

Sample identification to promote DL-based software development Although
we used only one application (picture labeling) in our evaluation, NetChopper
can similarly apply to other fields since it works for DL classifiers, which are
being widely used in many fields, i.e., natural language processing, malware
detection, etc. Moreover, the identified samples (as abnormal ones) can also be
used to guide optimization directions for refining DL models during the soft-
ware development. For example, those identified abnormal inputs form a critical
set for further consideration, which denotes those inputs that are indeed beyond
a DL model’s handling capability and would thus cause possi-bly misleading
or incorrect predictions. Then developers can consider whether and how to use
such identified inputs, e.g., for expanding the model’s ability by retraining it
with these particular input samples, or strengthening its original ability by keep-
ing them isolated. More issues such as model stability and corner cases can also
be taken into consideration during this refinement process, and such efforts can
guide different optimization directions for such DL-based software.

Other contributions to the AI community Generally, NetChopper gives a quantity
measurement for DL models’ input samples, and this can also be helpful for the AI
community. For example, by quantifying how inputs are expected or not for a DL
model, this can give a suggestion on how to filter extremely out-of-scope samples,
and this can also alleviate the cost of manual labelling for large-volume samples in
new application scenarios. Moreover, DL models are traditionally compared by their
prediction accuracies, considering input samples constructed for validation. With a
NetChopper-alike wrapper for sample identification, the comparison can now have
new considerations by combining their accuracies when accompanied by such a
wrapper. For instance, suppose that models A and B have their original accuracies of
75% and 80% for a particular scenario. With NetChopper, their actual accuracies in
practice could be instead improved to 90% and 85%, respectively. Then this may call
for new research on how to understand a DL model’s actual accuracy in practice
and how to use such facts.

6 Related work

Our work mainly relates to work from three aspects, namely, DL testing, abnor-
mal sample identification, and model comprehension and interpretation.

DL testing Testing has exhibited its unique importance on ensuring appli-
cations’ reliability. Concerning DL testing, existing work mainly focuses on

 Automated Software Engineering (2023) 30:9

1 3

9 Page 24 of 30

proposing diverse test adequacy criteria and generating effective test inputs.
Inspired by traditional code coverage criteria, Pei et al. (2017) first proposed neu-
ron coverage (NC) in DL to measure the activated neurons by test inputs. Later,
Ma et al. (2018) proposed DeepGuage, a more fine-grained testing criterion, to
both measure a DL model’s functionality and corner cases in neuron and layer
level. Kim et al. (2019) then introduced surprise adequacy to calculate how sur-
prising a test input is to a DL model with respect to its training dataset through
kernel density estimation and distance-based methods. Gerasimou et al. (2020)
proposed an importance-driven test adequacy criterion (IDC) to evaluate the
semantic diversity of a test set. Along this line, some work proposes to effectively
generate inputs to meet a higher coverage. Pei et al. (2017) used joint optimiza-
tion to maximize NC while also exposing as many differences between multi-
ple similar DL systems. Subsequent work (Guo et al. 2018; Tian et al. 2018; Xie
et al. 2019) used coverage-guided fuzzing to generate inputs with various heuris-
tic strategies. However, such inputs generated by these methods could be found
unnatural (Zhang et al. 2018). However, there is also some debate on whether a
higher coverage denotes better model reliability or robustness. For example, Li
et al. (2019) pointed out that the structural coverage criteria could sometimes be
misleading due to no strong correlation observed between misclassified inputs in
a test set and their corresponding structural coverage metrics, and they (Li et al.
2020) also propose to debugging confidence errors for DNNs by operational cali-
bration later. Other than testing DL models directly, another relevant line of work
focuses on testing DL implementations by validating popular DL frameworks or
APIs, since they are kernel to DL functionalities. For example, CRADLE (Pham
et al. 2019) proposed a cross-validation framework for testing libraries from
widely-used DL backends, e.g., tensorflow, pytorch, etc. Later, Wang et al. (2020)
refined CRADLE for better performance by investigating and proposing ways to
more effectively generate models for testing DL libraries via guided mutant gen-
eration. Other work (Wan et al. 2021, 2022) also directly or indirectly empha-
sized on the quality assurance for deep learning APIs used in DL programs.

Abnormal sample identification There is also a line of work, that emphasizes
on identifying abnormal sample effectiveness, so as to ensure DL applications’
ability at runtime. Early methods (Hendrycks and Gimpel 2016, 2017; Liang
et al. 2018) focused on empirical differences between clean and perturbed sam-
ples, which are easy to bypass by new attacks (Carlini and Wagner 2017). Some
other work chose to train abnormal sample detectors directly (Metzen et al. 2017;
Gong et al. 2017; Feinman et al. 2017), therefore they usually required abnor-
mal samples in advance for training. Some other work (Guo et al. 2018; Xu et al.
2018) tried to transform inputs to eliminate some impact of attacks, which could
be model-independent and neglect the ability of a certain DL model. Lee et al.
(2018) proposed to use confidence scores based on Mahalanobis distance from
different layers, which was shown to be robust to typical abnormal samples, i.e.,
adversarial and OOD examples. However, its weighted averaging process still
needs to train logistic regression detectors using both in-distribution and OOD
samples. Wang et al. (2019) first proposed to use model mutation testing to detect
adversarial samples, while it could suffer from huge time and space overhead.

1 3

Automated Software Engineering (2023) 30:9 Page 25 of 30 9

This has also been further studied by Wang et al. (2020) by dissecting DNN net-
works efficiently. Our work also works along this line, trying to seek for a great
balance on identification effectiveness and efficiency. These identification results
could greatly contribute to the reliability maintenance for DL applications.

Model comprehension and interpretation Our work also relates to DNN models’
comprehension and interpretation. Existing work typically analyzed internal units’
specific contributions of DNN models from various perspectives. Some work used
gradient-based (Zeiler and Fergus 2014; Mahendran and Vedaldi 2015) or up-con-
volutional techniques (Dosovitskiy and Brox 2016; Nguyen et al. 2017) to visual-
ize hidden neurons as meaningful images to help users understand the role of indi-
vidual neurons. Some other work (Ribeiro et al. 2016; Selvaraju et al. 2017; Fong
and Vedaldi 2017) conducted sensitivity analysis on models, i.e., extract the impor-
tant input regions or hidden neurons that are highly sensitive to the model outputs.
Besides, there was another line of work (Pan and Rajan 2020) focusing on decom-
posing existing DNN models into sub-modules, so as to facilitate further application
customization with more adapted functionalities. Some other work (LeCun et al.
1990; Hassibi et al. 1993; Molchanov et al. 2017) used sensitivity-based methods
to prune unimportant parts of DNN models while maintaining the performance
for computational acceleration. Our work also contributes to this line of research
by adopting LRP (Montavon et al. 2019), an explanation technique for DNN which
operates by propagating the prediction backward in the neural network according to
local propagation rules, to calculate the importance scores of neurons. Based on the
scores, we could further derive DNN models’ core part that is associated closely to
the training knowledge and model it as our model core. By doing so, NetChopper
then presents a freeze-and-mutate mechanism by first combining model mutation
and our model core analysis to effectively identify abnormal samples. We believe
that NetChopper ’s core analysis and core-based mutation could also suggest a
generic way for model comprehension and interpretation.

7 Conclusion

DL applications’ reliability is gaining popularity, and effectively identifying abnormal
inputs for the DL models deployed in DL applications is a promising way towards the
application reliability. In this article, we propose NetChopper to identify such abnor-
mal inputs in an effective and efficient way, by generating a small number of valua-
ble mutants via a novel core analysis and model mutation. The key insight is to iso-
late a model’s core functionalities from marginal supports, and exploit such isolation
to distinguish abnormal inputs from normal ones based on their behavioral differences,
which also gives a generic way for model interpretation, potentially also useful for simi-
lar model analysis and testing problems. The experimental evaluation also confirmed
NetChopper ’s promising performance and stability, generally outperforming or com-
parably effective as existing techniques. In future, we consider to further strengthen
NetChopper ’s effectiveness by investigating more NetChopper ’s variants and con-
sidering more complex application scenarios.

 Automated Software Engineering (2023) 30:9

1 3

9 Page 26 of 30

Author contributions HW and ZC wrote the main manuscript and conducted experiments in evaluation;
CX reviewed the whole manuscript and response letter.

Funding This research was supported by the Natural Science Foundation of Jiangsu Province under
Grant Nos. BK20202001 and BK20220771, and the Natural Science Foundation of China under Grant
No. 61932021. The authors would also like to thank the support from the Collaborative Innovation Center
of Novel Software Technology and Industrialization, Jiangsu, China.

Declarations

Competing interests The authors declare no competing interests.

References

Apple. About face id advanced technology. [EB/OL]. https:// suppo rt. apple. com/ en- us/ HT208 108
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Mon-

fort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. arXiv pre-
printarXiv:1604.07316, (2016)

Bulusu, S., Kailkhura, B., Li, B., Varshney, P., Song, D.: Anomalous instance detection in deep learn-
ing: A survey. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), (2020)

Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing ten detection methods.
In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 3–14,
(2017)

Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Proceedings of the
38th IEEE Symposium on Security and Privacy (SP 2017), pages 39–57. IEEE, (2017)

Carrara, F., Falchi, F., Caldelli, R., Amato, G., Fumarola, R., Becarelli, R.: Detecting adversarial example
attacks to deep neural networks. In: Proceedings of the 15th International Workshop on Content-
Based Multimedia Indexing, pages 1–7, (2017)

Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: Extending mnist to handwritten letters. In:
2017 International Joint Conference on Neural Networks (IJCNN), pages 2921–2926. IEEE, (2017)

Cohen, G., Sapiro, G., Giryes, R.: Detecting adversarial samples using influence functions and nearest
neighbors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 14453–14462, (2020)

Dia, H.: ‘self-driving’ cars are still a long way off. here are three reasons why. [EB/OL]. https:// theco
nvers ation. com/ self- drivi ng- cars- are- still-a- long- way- off- here- are- three- reaso ns- why- 159234
Accessed April 22, (2021)

Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4829–4837, (2016)

Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv
preprintarXiv:1703.00410, (2017)

Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Pro-
ceedings of the IEEE international conference on computer vision, pages 3429–3437, (2017)

Frigge, M., Hoaglin, D.C., Iglewicz, B.: Some implementations of the boxplot. Am. Stat. 43(1), 50–54
(1989)

Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In: International conference on machine learning, pages 1050–1059. PMLR, (2016)

Gerasimou, S., Eniser, H.F., Sen, A., Cakan, A.: Importance-driven deep learning system testing. In:
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE 2020), pages 702–
713. IEEE, (2020)

Gong, Z., Wang, W., Ku, W.-S.: Adversarial and clean data are not twins. arXiv preprintarXiv:1704.04960,
(2017)

https://support.apple.com/en-us/HT208108
https://theconversation.com/self-driving-cars-are-still-a-long-way-off-here-are-three-reasons-why-159234
https://theconversation.com/self-driving-cars-are-still-a-long-way-off-here-are-three-reasons-why-159234

1 3

Automated Software Engineering (2023) 30:9 Page 27 of 30 9

Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Yoshua B.,
Yann L., (eds), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, (2015)

Google. Google translate. [EB/OL]. https:// trans late. google. cn/
Guo, J., Jiang, Y., Zhao, Y., Chen, Q., Sun, J.: DLFuzz: differential fuzzing testing of deep learning sys-

tems. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), pages
739–743. ACM, (2018)

Guo, C., Rana, M., Cissé, M., van der Maaten, L.: Countering adversarial images using input transforma-
tions. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, (2018)

Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network pruning. In: IEEE inter-
national conference on neural networks, pages 293–299. IEEE, (1993)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pages 770–778,
(2016)

Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in
neural networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, (2017)

Hendrycks, D., Gimpel, K.: Visible progress on adversarial images and a new saliency map. (2016)
Karpathy, A.: Software 2.0. https:// karpa thy. medium. com/ softw are-2- 0- a6415 2b37c 35, (2017)
Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise adequacy. In: Proceed-

ings of the 41th ACM/IEEE International Conference on Software Engineering (ICSE 2019), (2019)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images Technical report. Cit-

eseer, Princeton (2009)
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. In: 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net, (2017)

LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in neural information process-
ing systems, pages 598–605, (1990)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recog-
nition. Proc. IEEE 86(11), 2278–2324 (1998)

Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples
and adversarial attacks. In: Bengio, S., Wallach, H., Larochelle,H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds) Advances in Neural Information Processing Systems 31 (NIPS 2018), pages 7167–
7177. Curran Associates, Inc., (2018)

Li, Z., Ma, X., Xu, C., Cao, C.: Structural coverage criteria for neural networks could be misleading. In:
Proceedings of the 41th ACM/IEEE International Conference on Software Engineering (ICSE 2019
NIER), pages 269–280, (2019)

Li, Z., Ma, X., Xu, C., Xu, J., Cao, C., Lu, J.: Operational calibration: Debugging confidence errors
for dnns in the field. In: Proceedings of the 2020 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2020), pages 901–913. ACM, (2020)

Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural
networks. (2018)

Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L., Liu, Y., et al.: Deep-
Gauge: multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE 2018), pages 120–
131. ACM, (2018)

Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 5188–5196, (2015)

Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, (2017)

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based lan-
guage model. In: Eleventh annual conference of the international speech communication associa-
tion, (2010)

https://translate.google.cn/
https://karpathy.medium.com/software-2-0-a64152b37c35

 Automated Software Engineering (2023) 30:9

1 3

9 Page 28 of 30

Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for
resource efficient inference. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, (2017)

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation:
an overview. Explainable AI: interpreting, explaining and visualizing deep learning, pages 193–209,
(2019)

Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep
neural networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), pages 2574–2582, (2016)

Murphy, C., Kaiser, G.E., Arias, M.: An approach to software testing of machine learning applications.
In: Proceedings of the Nineteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2007), Boston, Massachusetts, USA, July 9-11, 2007, page 167. Knowledge
Systems Institute Graduate School, (2007)

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with
unsupervised feature learning. (2011)

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., Yosinski, J.: Plug & play generative networks: con-
ditional iterative generation of images in latent space. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4467–4477, (2017)

Pan, R., Rajan, H.: On decomposing a deep neural network into modules. In: Proceedings of the 2020
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020), pages 889–900. ACM, (2020)

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z., Swami, A.: The limitations of deep learn-
ing in adversarial settings. In: Proceedings of the 2016 IEEE European Symposium on Security and
Privacy (EuroS &P 2016), pages 372–387. IEEE, (2016)

Papers with code. Adversarial defense. [EB/OL]. https:// paper swith code. com/ task/ adver sarial- defen se
Papers with code. Out-of-distribution detection. [EB/OL]. https:// paper swith code. com/ task/ out- of- distr

ibuti on- detec tion
Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of deep learning systems.

In: Proceedings of the 26th Symposium on Operating Systems Principles (SOSP 2017), pages 1–18.
ACM, (2017)

Pham, H.V., Lutellier, T., Qi, W., Tan, L.: CRADLE: Cross-backend validation to detect and localize
bugs in deep learning libraries. In: Proceedings of the 41st ACM/IEEE International Conference on
Software Engineering (ICSE 2019), pages 1027–1038, (2019)

Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions of any classi-
fier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135–1144, (2016)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back propagating errors.
Nature 323(6088), 533–536 (1986)

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In: Proceedings of the IEEE international
conference on computer vision, pages 618–626, (2017)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In:
Yoshua, B. and Yann, L. (eds) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, (2015)

Sitawarin, C., Wagner, D.: Defending against adversarial examples with k-nearest neighbor. arXiv
e-prints, pages arXiv–1906, (2019)

Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Christopher J. C.
Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds) Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pages 2553–2561, (2013)

Tesla. Autopilot. [EB/OL]. https:// www. tesla. com/ autop ilotAI
Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-network-driven autono-

mous cars. In: Proceedings of the 40th International Conference on Software Engineering (ICSE
2018), pages 303–314. ACM, (2018)

Wan, C., Liu, S., Hoffmann, H., Maire, M., Lu, S.: Are machine learning cloud apis used correctly? In:
Proceedings of the 43th International Conference on Software Engineering (ICSE 2021), pages
125–137. ACM, (2021)

https://paperswithcode.com/task/adversarial-defense
https://paperswithcode.com/task/out-of-distribution-detection
https://paperswithcode.com/task/out-of-distribution-detection
https://www.tesla.com/autopilotAI

1 3

Automated Software Engineering (2023) 30:9 Page 29 of 30 9

Wan, C., Liu, S., Xie, S., Liu, Y., Hoffmann, H., Maire, M., Lu, S.: Automated testing of software that
uses machine learning apis. In: Proceedings of the 44th International Conference on Software Engi-
neering (ICSE 2022). ACM, (2022)

Wang, J., Dong, G., Sun, J., Wang, X., Zhang, P.: Adversarial sample detection for deep neural network
through model mutation testing. In: Proceedings of the 41st ACM/IEEE International Conference
on Software Engineering (ICSE 2019), pages 1245–1256, (2019)

Wang, H., Xu, J., Xu, C., Ma, X., Lu, J.: DISSECTOR: input validation for deep learning applications by
crossing-layer dissection. In: Proceedings of the 42th ACM/IEEE International Conference on Soft-
ware Engineering (ICSE 2020), pages 727–738, (2020)

Wang, Z., Yan, M., Chen, J., Liu, S., Zhang, D.: Deep learning library testing via effective model gen-
eration. In: Proceedings of the 2020 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020), pages
788–799. ACM, (2020)

Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learn-
ing algorithms. arXiv preprintarXiv:1708.07747, (2017)

Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B., Yin, J., See, S.: Deephunter: a
coverage-guided fuzz testing framework for deep neural networks. In: Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 146–157, (2019)

Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in deep neural networks. In:
25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, Cali-
fornia, USA, February 18-21, 2018. The Internet Society, (2018)

Yann L. The mnist database of handwritten digits. http:// yann. lecun. com/ exdb/ mnist/, (1998)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European conference

on computer vision, pages 818–833. Springer, (2014)
Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: Survey, landscapes and horizons.

IEEE Transactions on Software Engineering, pages 1–1, (2020)
Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based metamorphic testing

and input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/
IEEE International Conference on Automated Software Engineering (ASE 2018), pages 132–142.
ACM, (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://yann.lecun.com/exdb/mnist/

 Automated Software Engineering (2023) 30:9

1 3

9 Page 30 of 30

Authors and Affiliations

Huiyan Wang1,2 · Ziqi Chen1,2 · Chang Xu1,2

 * Huiyan Wang
 why@nju.edu.cn

 Ziqi Chen
 rubychen0611@gmail.com

 Chang Xu
 changxu@nju.edu.cn

1 State Key Laboratory for Novel Software Technology, Nanjing University, 210023 Nanjing,
Jiangsu, China

2 Department of Computer Science and Technology, Nanjing University, 210023 Nanjing,
Jiangsu, China

	Freeze-and-mutate: abnormal sample identification for DL applications through model core analysis
	Abstract
	1 Introduction
	2 Background
	2.1 Deep learning
	2.2 DL testing and abnormal sample identification

	3 Our approach
	3.1 Approach overview
	3.2 Phase 1: Offline preparation phase
	3.2.1 Neuron importance analysis
	3.2.2 Core-based mutation
	3.2.3 Diff-threshold analysis

	3.3 Phase 2: Online identification phase
	3.3.1 Model difference profiling
	3.3.2 Sample identification

	4 Evaluation
	4.1 Research questions
	4.2 Experimental design and setup
	4.3 Experimental results and analyses
	4.3.1 RQ1 (Distinguishing ability)
	4.3.2 RQ2 (Effectiveness)
	4.3.3 RQ3 (Controlling factors)
	4.3.4 RQ4 (Efficiency)

	4.4 Threat analysis and discussion

	5 Application discussion
	6 Related work
	7 Conclusion
	References

