
SGUARD: A Feature-based Clustering Tool for
Effective Spreadsheet Defect Detection

Da Li†§, Huiyan Wang†§, Chang Xu†‖, Ruiqing Zhang¶‡‡, Shing-Chi Cheung‡††, Xiaoxing Ma†‖
†State Key Lab. for Novel Software Tech. and Dept. of Comp. Sci. and Tech., Nanjing University, Nanjing, China

¶Search Tech. Center Asia, Microsoft, Suzhou, China
‡Dept. of Comp. Sci. and Engr., The Hong Kong University of Sci. and Tech., Hong Kong, China

§{lidanuaa, cocowhy1013}@gmail.com, ‖{changxu, xxm}@nju.edu.cn, ‡‡zhangrq3216@163.com, ††scc@cse.ust.hk

Abstract—Spreadsheets are widely used but subject to var-
ious defects. In this paper, we present SGUARD to effectively
detect spreadsheet defects. SGUARD learns spreadsheet fea-
tures to cluster cells with similar computational semantics,
and then refine these clusters to recognize anomalous cells
as defects. SGUARD well balances the trade-off between the
precision (87.8%) and recall rate (71.9%) in the defect de-
tection, and achieves an F-measure of 0.79, exceeding exist-
ing spreadsheet defect detection techniques. We introduce the
SGUARD implementation and its usage by a video presentation
(https://youtu.be/gNPmMvQVf5Q), and provide its public down-
load repository (https://github.com/sheetguard/sguard).

Index Terms—Cell clustering, Defect detection

I. INTRODUCTION

Nowadays, spreadsheets are being widely used, and have
become one of the most popular end-user environments [1].
However, despite the popularity, spreadsheets are found to
be error-prone [2], especially for their formula-related cells.
We name these errors in the concerned formulas defects in
spreadsheets, which are also found to be root causes for many
other errors [3], e.g., errors in data cells. This calls for effective
spreadsheet defect detection, which is still challenging for two
major reasons. First, spreadsheets are typically maintained by
non-programmer end-users, and are usually not supported by
auditing and tracking services [4]. Second, spreadsheet cells
own hidden semantic relationships among them, which lead
to difficulties in reasoning for spreadsheet defects.

To address these challenges, various techniques have been
proposed [5–8]. Some rely on header information in spread-
sheets to infer type inconsistencies in their formula references,
e.g., UCHECK [5] and DIMENSION [6], but the inference fo-
cuses only on a limited scope, leading to an unsatisfactory pre-
cision and recall rate [9]. Some others exploit specific patterns
(e.g., rectangle areas) to recognize missing or inconsistent
formulas and achieve a much better precision in spreadsheet
defect detection, e.g., AMCHECK [7] and CACHECK [8], but
their relied patterns are static and do not adapt to varying
styles in different spreadsheets, leading to a compromised
recall rate [8].

In this paper, we present SGUARD, an effective tool for
detecting spreadsheet defects. SGUARD builds on our previous
efforts, CUSTODES [10] (ever considered as “best automated
error finder” [11]) and WARDER [12], and can adaptively

learn varying styles (features) of different spreadsheets for
cell clustering, from which it identifies anomalous cells as
defects. SGUARD consists of three main components, i.e., cell
clustering, cluster refinement, and defect detection. The first
component uses a two-stage clustering technique to cluster
cells with similar computational semantics based on their
shared strong (e.g., formula semantics) and weak features
(e.g., layout information), aiming for a high recall rate. The
second component refines the clustering results by squeezing
out irrelevant cells from clusters and removing unquantified
clusters, aiming for a high precision. The third component
analyzes the refined clusters and detect outliers in each cluster
as defects to be presented to end users, aiming for providing
useful bug information. The SGUARD tool is fully automated
with one button-click execution.

We experimentally evaluated SGUARD on the widely-used
EUSES corpus [13]. Regarding defect detection, SGUARD
achieved a precision of 87.8% and recall rate of 71.9%, against
0.5–72.3% and 0.1–68.4% for other techniques, respectively.
We also evaluated SGUARD on the latest spreadsheet corpus
VEnron2 [14]. The results show that SGUARD exhibited its
unique superiority over existing techniques (41.3% against
16.3–34.3% on the precision of spreadsheet defect detection).

In the following, we present an illustrative example (Sec-
tion II), elaborate on SGUARD’s methodology (Section III),
introduce its implementation (Section IV), evaluate its perfor-
mance (Section V), and concludes the paper (Section VI).

II. ILLUSTRATIVE EXAMPLE

Fig. 1 illustrates part of an example worksheet (a page
in a spreadsheet) adapted from the EUSES corpus [13]. It
contains three cell clusters, each of which follows a specific
computational semantics, as annotated by three colors (green,
orange, and blue). Among them, five cells contain faulty
formulas (defects), namely, D15, D19, F13, F16, and F19,
as annotated by red triangles. To facilitate the discussion, we
specify eight blocks (containing one or multiple cells by red
dashed lines) by letters from A to H. We consider different
spreadsheet defect detection techniques below 1.

1We exclude UCHECK and DIMENSION from the discussion since they
neither have the cluster concept nor report any defect for this example.



Fig. 1: An illustrative example adapted from EUSES

When one applies AMCHECK, it relies on fixed rectangle
patterns to recognize clusters and reports one cell cluster
(block C), missing the other two (blocks A+B and F+H). As a
result, it detects only two defects (D19 and F19), missing the
other three (false negatives). When one applies CACHECK,
it is extended with generic rectangle patterns and reports four
cell clusters (A, B, C, E+F+G+H). Note that it considers A and
B as two separate cell clusters, and wrongly considers blocks
E and G. As a result, CACHECK wrongly reports C28 and
E28 as defects (false positives). When one applies CUSTODES
(SGUARD’s predecessor), it learns varying features in spread-
sheets to cluster cells and does not restrict to rectangle areas. It
reports three cell clusters (A+B, C, D+F+H), which are much
more precise. Still, as affected by the irrelevant cell B28 (block
D), CUSTODES wrongly reports B28 as defect (false positive).
Finally, when one applies SGUARD (integrating CUSTODES +
WARDER), it correctly recognizes three precise cell clusters,
and detect five true defects exactly.

III. SGUARD METHODOLOGY

Fig. 2 illustrates SGUARD’s three main components,
namely, cell clustering, cluster refinement, and defect detec-
tion, as aforementioned, and we explain their details below.

A. Component 1: Cell Clustering

The first component uses a two-stage cell clustering tech-
nique, aiming to cluster cells with similar computational
semantics together based on their shared features.

In the first stage, SGUARD forms cell clusters according
to these cells’ shared strong features (e.g., cell formulas and
their reference relations). These clusters are also known as
seed clusters to be expanded later. Specifically, when consid-
ering strong features, all cell formulas are parsed into two
tree structures, namely, abstract syntax tree (AST) and cell
dependency tree, with each node containing its referenced
cells, values, or operations. Based on such structures, two cell
formulas can be compared by their tree similarity measurement
according to a tree editing distance algorithm [15]. During the
clustering process, each formula cell initially forms a cluster
with itself and then iteratively joins other clusters based on a
standard hierarchical agglomerative clustering algorithm [16]
according to their measured similarities. SGUARD considers

Fig. 2: Workflow of SGUARD

thus obtained clusters with at least two formula cells as seed
clusters.

In the second stage, the seed clusters are expanded to
include those cells that are yet not in any cluster (data cells
and remaining formula cells), as long as these cells share
similar weak features with cells already in some seed cluster.
SGUARD considers six weak features, namely, cell address,
label [5], alliance [17], table [18], rectangle cell range [7],
and gap template [18]. SGUARD considers a cell cluster to be
expanded with more cells according to a distance measurement
based on a bootstrapping algorithm as inspired by existing
work [19]. By doing so, SGUARD both identifies cells with
similar computational semantics and retrieves back more cells
that were previously isolated due to their contained defects,
expecting for a high recall rate in later defect detection.

B. Component 2: Cluster Refinement

The second component refines the cell clusters obtained
from cell clustering, considering that the clustering could be
too aggressive and accidentally include irrelevant cells or form
unqualified clusters. SGUARD refines these cell clusters based
on three validity properties, namely, single-cell, multi-cell, and
whole-cluster validities.

For the single-cell property, SGUARD focuses on the quality
of each cell in a cluster, and requests the cell to be valid (e.g.,
any cell should not cite a wrong place or contain an invalid
reference). For the multi-cell property, SGUARD focuses on
cell relations in each cluster and its newly added cells, and
requests all concerned cells to stick to similar characteristics
(e.g., cell reference overlapping relations among cells in a
cluster should not be violated by any newly added cell). For
the whole-cluster property, SGUARD focuses on the quality of
each whole cell cluster, and requests most cells in it to share a
similar computation semantics [8] (e.g., any cell cluster should
be able to generate a unique formula expression that fits most
of its included cell formulas).

SGUARD applies these three properties to refine cell clus-
ters, and filter out those irrelevant cells or unqualified clusters
(when violating any property). By doing so, SGUARD expects
for a high precision in later spreadsheet defect detection.



Fig. 3: SGUARD usage screenshot

C. Component 3: Defect Detection

The last component performs outlier detection to identify
defects in each cell cluster and report them to end users.

Specifically, in each formed cluster, any data cell is reported
to contain a missing formula defect since it can be unified with
other cells in the same cluster by the same formula expression,
and all formula cells are measured by a local outlier detection
algorithm [20] with AST structures to classify outlier ones as
containing inconsistent formula defects. All detected defects
are reported to end users with fine-grained annotations (e.g.,
clusters marked in different colors and defects marked by red
triangles in Fig. 1). Such annotations are helpful in assisting
later manual confirmation and bug-fixing.

IV. IMPLEMENTATION AND USAGE

We implemented the SGUARD tool in Java. It uses Apache
POI [21] to manipulate spreadsheets. Its implementation con-
tains a total of 10,500 lines of code, including 7,300 lines
of core code and 3,200 lines of graphical interface related
code. Fig. 3 gives a screenshot of using SGUARD for detecting
spreadsheet defects in an interactive way.

We briefly introduce SGUARD’s usage. First, to select a
specific Excel spreadsheet file for analysis, a user clicks the
“Open Excel File” button in the menu bar and then all its
associated worksheets would be listed in the left “Worksheet
list” area for watch. After that, the user can select one or
multiple spreadsheet defect detection techniques from the right
“Internal techs” panel to analyze the worksheets in the opened
spreadsheet. Here, note that SGUARD not only implemented
its own CUSTODES (“CUSTODES” for its published version
in [10] and “CUST-OPT” for its latest version [22]) and
WARDER [12] techniques as we mentioned before, but also
integrated three existing popular defect detection techniques,
i.e., AMCHECK [7], CACHECK [8], and TABLECHECK [23],
so that its user can easily choose different techniques for
comparison. Then, with a worksheet selected from the left
panel and (multiple) technique(s) selected from the right panel,
the user can click “Start analysis” to start SGUARD’s defect
detection process. When the analyses are complete, the results
(i.e., worksheet with colored annotations) would be shown in
the central panel for the selected worksheet. Then one can

TABLE I: Defect detection results for the six spreadsheet
defect detection techniques on EUSES [12]

Technique Detected TP FP precision recall F -measure
UCHECK 204 1 203 0.5% 0.1% 0.00

DIMENSION 1,824 14 1,828 0.8% 0.7% 0.01
AMCHECK 2,372 1,316 1,030 56.1% 66.7% 0.61
CACHECK 1,866 1,350 516 72.3% 68.4% 0.70
CUSTODES 2,380 1,539 841 64.7% 78.2% 0.71
SGUARD 1,612 1,415 197 87.8% 71.9% 0.79

choose to inspect certain results (cell clusters annotated by
different colors and defects annotated by red colors specially)
by clicking “Defective cells” or “Marked clusters” buttons in
the right middle panel. Moreover, users can also easily save
the detection results (worksheets with annotations) into files
by clicking the “Save to files” button for later analyses or
reuse. Some logging information would also be shown during
the SGUARD execution (e.g., “Info” and “Logs” panels) for
deeper investigation.

SGUARD is fully automated. Everything a user needs is
almost one button click.

V. EVALUATION

A. Experimental Setup

We evaluate our SGUARD and compare it to existing
techniques, including UCHECK, DIMENSION, AMCHECK,
CACHECK, and CUSTODES (SGUARD’s predecessor). We
note that we used CUSTODES’s latest version CUST-OPT in
our experiment. We selected a refined sample set [10] from
the EUSES corpus [13] as our evaluation benchmark, which
contains 70 spreadsheets and embedded 291 worksheets. These
worksheets contain 189,027 cells, among which 26,716 are
formula cells. The benchmark also contains ground truths,
which annotate 1,610 cell clusters and among them 1,974
defects (faulty cells with missing or inconsistent formu-
las). We also compare four leading techniques (AMCHECK,
CACHECK, CUSTODES, and SGUARD) on a larger corpus
VEnron2 [14] (containing 6,258 worksheets after selecting the
latest spreadsheet in its each evolution group) to investigate
their practical usefulness in spreadsheet defect detection. All
experiments were conducted on a commodity PC with an Intel
Core™ i7-6700 CPU @3.41GHz with 64GB RAM, installed
with Microsoft Windows 10 Professional and Oracle Java 8.

B. Experimental Results

Table I compares the defect detection results for all the six
techniques on the selected EUSES spreadsheets. We observe
that UCHECK and DIMENSION achieved a quite unsatisfactory
precision and recall rate, leading to a very low F-measure
(0.00–0.01), due to their limited analysis scopes. The other
four techniques have different strengths in spreadsheet detect
detection. For example, AMCHECK and CACHECK signif-
icantly improved the detection effectiveness by cell array
based patterns (F-measure of 0.61–0.70), and CACHECK
additionally improved the precision to 72.3% over that of its
predecessor AMCHECK (56.1%), but their recall rates were



TABLE II: Defect detection results for the four spreadsheet
defect detection techniques on VEnron2 [12]

For all 6,258 worksheets For sampled 300 worksheets

Technique # reported
defects

Time cost
(min) # defects # TP Precision

AMCHECK 20,280 21 3,316 540 16.3%
CACHECK 12,953 372 1,559 534 34.3%
CUSTODES 14,102 537 2,334 629 26.9%
SGUARD 9,462 518 1,240 512 41.3%

restricted to a 66.7–68.4% level. CUSTODES and SGUARD,
instead, achieved a higher recall rate of 71.9–78.2% by their
feature-based cell clustering, and SGUARD additionally im-
proved the precision to 87.8% over that of its predecessor
CUSTODES (64.7%) by its dedicated cluster refinement via
validity properties. Altogether, SGUARD achieved the highest
F-measure of 0.79 against 0.00–0.71 of other techniques.

Table II compares the defect detection results for four
leading techniques (AMCHECK, CACHECK, CUSTODES, and
SGUARD) on the VEnron2 spreadsheets, which consists of two
parts: complete 6,258 worksheets and randomly sampled 300
worksheets for precision comparison [12]. From the second
part, we observe that: (1) SGUARD achieved the highest
precision (41.3%), outperforming the others by 7.0–25.0%;
(2) although SGUARD reported a little less true positives
(512), which was accompanied with much fewer false positives
(728), which are 297–2,048 fewer than those of the other three
techniques, and this feature can be very useful since all spread-
sheet defects have to be manually inspected later. Besides,
from the first part, we observe that SGUARD reported fewest
defects (9,462), as compared to 20,280 for AMCHECK and
12,953 for CACHECK. Considering that SGUARD achieved
the highest precision, its report quality is expected to be high,
e.g., in 1,240 defects SGUARD detected 512 true positives,
while in 3,316 (over 2.6 times) defects AMCHECK detected
only 540 true positives (only marginally more). Regarding
the efficiency (time cost), SGUARD took 518 minutes for
analyzing all 6,258 worksheets, with an average of 5.0 seconds
for each worksheet. This cost is higher than AMCHECK and
CACHECK, but slightly lower than its predecessor CUSTODES
by its cluster refinement.

As a summary, we recommend SGUARD for practical
spreadsheet defect detection, considering its higher precision
and F-measure, but with somewhat more time cost. Besides,
SGUARD is flexible for integrating with other spreadsheet
detect detection techniques, as aforementioned.

VI. CONCLUSION

In this paper, we present SGUARD, an effective clustering-
based tool for detecting spreadsheet defects. SGUARD learns
spreadsheet features to cluster cells with similar computational
semantics, from which it detects faulty cells with formula
defects. SGUARD aims for both precision and recall rate
in spreadsheet defect detection and achieves the best F-
measure among existing techniques. Currently, SGUARD has
been implemented as a stand-alone automated tool with user-
friendly GUI, capable of manipulating Excel spreadsheets,

with one button-click execution for defect detection with
colorful annotations. It is also extensible for other spreadsheet
defect detection plugins. The links for its video presentation
and download repository are https://youtu.be/gNPmMvQVf5Q
and https://github.com/sheetguard/sguard, respectively.

ACKNOWLEDGEMENT

This work was supported by National Key R&D Program
(Grant #2017YFB1001801) and National Natural Science
Foundation (Grants #61932021 and #61690204) of China.

REFERENCES

[1] P. Carey and K. N. Berk. Data Analysis with Microsoft Excel.
Brooks/Cole, 1997.

[2] S. G. Powell, K. R. Baker, and B. Lawson. A critical review
of the literature on spreadsheet errors. DSS, 2008.

[3] R. R. Panko and S. Aurigemma. Revising the panko–halverson
taxonomy of spreadsheet errors. DSS, 2010.

[4] B. R. Lawson, K. R. Baker, S. G. Powell, and L. Foster-Johnson.
A comparison of spreadsheet users with different levels of
experience. Omega, 2009.

[5] R. Abraham and M. Erwig. UCheck: A spreadsheet type
checker for end users. JVLC, 2007.

[6] C. Chambers and M. Erwig. Automatic detection of dimension
errors in spreadsheets. JVLC, 2009.

[7] W. Dou, S. C. Cheung, and J. Wei. Is spreadsheet ambiguity
harmful? detecting and repairing spreadsheet smells due to
ambiguous computation. In ICSE, 2014.

[8] W. Dou, C. Xu, S. C. Cheung, and J. Wei. CACheck: detecting
and repairing cell arrays in spreadsheets. TSE, 2017.

[9] R. Zhang, C. Xu, S. C. Cheung, P. Yu, X. Ma, and J. Lu. How
effectively can spreadsheet anomalies be detected: An empirical
study. JSS, 2017.

[10] S. C. Cheung, W. Chen, Y. Liu, and C. Xu. CUSTODES:
automatic spreadsheet cell clustering and smell detection using
strong and weak features. In ICSE, 2016.

[11] D. W. Barowy, E. D. Berger, and B. Zorn. ExceLint: Automat-
ically finding spreadsheet formula errors. OOPSLA, 2018.

[12] D. Li, H. Wang, C. Xu, F. Shi, X. Ma, and J. Lu. WARDER:
Refining cell clustering for effective spreadsheet defect detec-
tion via validity properties. In QRS, 2019.

[13] M. Fisher and G. Rothermel. The EUSES spreadsheet corpus: a
shared resource for supporting experimentation with spreadsheet
dependability mechanisms. In SEN, 2005.

[14] L. Xu, W. Dou, C. Gao, J. Wang, J. Wei, H. Zhong, and
T. Huang. SpreadCluster: recovering versioned spreadsheets
through similarity-based clustering. In MSR, 2017.

[15] M. Pawlik and N. Augsten. RTED: a robust algorithm for the
tree edit distance. VLDB Endowment, 2011.

[16] W. H. Day and H. Edelsbrunner. Efficient algorithms for
agglomerative hierarchical clustering methods. JC, 1984.

[17] Y. Ayalew, M. Clermont, and R. T. Mittermeir. Detecting errors
in spreadsheets. arXiv, 2008.

[18] R. Abraham and M. Erwig. Inferring templates from spread-
sheets. In ICSE, 2006.

[19] P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic
patterns for automatically harvesting semantic relations. In ACL,
2006.

[20] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. LOF:
identifying density-based local outliers. In ICMD, 2000.

[21] https://poi.apache.org/. [Online; accessed 19-June-2019].
[22] http://sccpu2.cse.ust.hk/custodes/. [Online; accessed 19-June-

2019].
[23] W. Dou, S. C. Cheung, C. Gao, C. Xu, L. Xu, and J. Wei.

Detecting table clones and smells in spreadsheets. In FSE, 2016.

https://poi.apache.org/
http://sccpu2.cse.ust.hk/custodes/

