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ABSTRACT

Deep learning (DL) applications are becoming increasingly popular.
Their reliabilities largely depend on the performance of DL models
integrated in these applications as a central classifying module.
Traditional techniques need to retrain the models or rebuild and
redeploy the applications for coping with unexpected conditions
beyond the models’ handling capabilities. In this paper, we take
a fault tolerance approach, Dissector, to distinguishing those in-
puts that represent unexpected conditions (beyond-inputs) from
normal inputs that are still within the models’ handling capabilities
(within-inputs), thus keeping the applications still function with
expected reliabilities. The key insight of Dissector is that a DL
model should interpret a within-input with increasing confidence,
while a beyond-input would probably cause confused guesses in
the prediction process. Dissector works in an application-specific
way, adaptive to DL models used in applications, and extremely
efficiently, scalable to large-size datasets from complex scenarios.
The experimental evaluation shows that Dissector outperformed
state-of-the-art techniques in the effectiveness (AUC: avg. 0.8935
and up to 0.9894) and efficiency (runtime overhead: only 3.3–5.8
milliseconds). Besides, it also exhibited encouraging usefulness in
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defensing against adversarial inputs (AUC: avg. 0.9983) and improv-
ing a DL model’s actual accuracy in use (up to 16% for CIFAR-100
and 20% for ImageNet).
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1 INTRODUCTION

Deep learning (DL) is assisting applications in a growing way [2, 5,
16, 22, 52, 61, 63]. In such applications, DL models are typically in-
stantiated from training scenarios, and later participate in decision-
making as a central classifier for new scenarios. This practice sim-
plifies the software design in specifying how software should be-
have for complex scenarios. With this benefit, DL applications are
increasingly emerging for complex scenarios that are otherwise
challenging for traditional programs, e.g., image classification [5],
object identification [22], and self-driving [2, 57, 66].

However, due to the difference between new scenarios and train-
ing scenarios, as well as the evolution [7] of, and noises in, new
scenarios, even a successful DL application can still encounter in-
puts that are beyond its DL model’s handling capability. Then the
consequences are unexpected predictions in the decision-making
and abnormal behaviors from the application.

One could consider replacing the concerned DL model with a
new one (e.g., with different generalizability) [12, 53], or upgrading
the model by retraining it with more data from new scenarios
(e.g., critical data [56], corner-case data [11, 47, 57], or less-biased
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data [37]). Although helpful, the replacing or retraining practice is
non-trivial, and especially not preferred after the DL application’s
deployment (e.g., self-driving already put into use). Furthermore,
the application could be disrupted from its normal execution, and
itself may need rebuilding and redeployment, not to mention that
such issues keep arising in future (e.g., new weather conditions,
obstacles, or environments encountered on highways).

In this paper, we consider a fault tolerance approach. After appli-
cation deployment, we make the application recognize the inputs
that are beyond its DL model’s handling capability and prevent
them from impacting its decision-making (e.g., isolated or referring
to manual driving), since the predictions for these inputs are unex-
pected and probably misleading or wrong. Then the application is
still functional to other inputs and behaves as originally expected,
without the need for model retraining or application redeployment.
This approach can also be flexible for copingwith complex scenarios
that can hardly be fully anticipated in advance [2, 16].

Our approach relates to input validation [58, 66] or data clean-
ing [4, 19–21] efforts, but we argue for addressing the problem from
an application’s perspective rather than focusing on the inputs
themselves only. First, comparing the inputs to original training
data may not be feasible, either because of the unavailability or due
to the overwhelming runtime overhead [6, 18, 66]. Second, even
if one could do so, different DL models can be instantiated from
the same training data by different DL algorithms with different
parameters, and thus the same validation or cleaning technique can
hardly make filtered inputs suit the varying handling capabilities of
different DL models. Therefore, our approach has to be application-
specific, aware of its target DL model (model-aware), as well as
being efficient, incurring only marginal overhead at runtime.

Besides, our approach has to address a key problem, i.e., telling
when the inputs to an application are beyond its DL model’s han-
dling capability. This is challenging because there is no oracle defin-
ing precisely the boundary of a DL model’s handling capability, and
even the specific DL algorithm used for instantiating this model
does not help much on this (its scope of generalization never ex-
plicitly specified). Regarding this, we make two observations. First,
when the inputs are beyond a DL model’s handling capability, their
predictions can easily be misleading or wrong, leading to a lower
accuracy. Second, such misleading or wrong predictions do not
come with no clue; instead, they can be perceived during the DL
model’s prediction process.

Based on the above analyses, we in this paper propose a novel
technique, Dissector, to monitor a DL application’s inputs and iso-
late those possibly beyond its DL model’s handling capability from
impacting the application’s decision-making. First, this technique
is model-aware, monitoring whether a DL model interprets an in-
put with increasing confidence in its prediction towards the final
result by collecting its uniqueness evidence. If yes, Dissector con-
siders such inputs within the model’s handling capability (named
within-inputs), or otherwise, beyond that (named beyond-inputs).
In practice, adversarial inputs that are dedicatedly generated for
attacking DL models are one example of beyond-inputs; besides,
natural inputs collected by a physical camera (e.g., a photo image)
can also be beyond or within according to its target DL model’s han-
dling capability. Second, this technique is also lightweight, without
any heavy data comparison or analysis operation. This enables it to
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Figure 1: DL model architecture

validate inputs efficiently at runtime, capable for complex scenarios
with large-scale data.

We experimentally evaluated Dissector and compared it to
state-of-the-art techniques (mMutant [58] and Mahalanobis [28]) in
distinguishing beyond-inputs from within-inputs. The experiments
reported promising results for Dissector (AUC: 0.8223–0.9894),
while existing techniques were less effective (AUC: 0.6827–0.9770
and 0.6692–0.8334, respectively). What is worth mentioning is that
Dissector applied successfully to large datasets like ImageNet,
while existing techniques incurred crashing cases due to large-
memory issues. Besides, Dissector was extremely efficient at run-
time (3.3–5.8 milliseconds per sample), about 45x and 763x speedup
versus existing techniques, respectively. Finally, Dissector also
exhibited nice help in defensing against adversarial inputs (AUC:
0.9962–0.9998) and improving a DL model’s actual accuracy in use
(e.g., by 19% for CIFAR-100 and 20% for ImageNet).

We summarize our contributions in this paper below:
• Proposed a lightweight technique for automated validation
of inputs to DL applications (as classifiers).

• Evaluated our technique’s performance using real-world
large-scale DL models.

• Explored our technique’s usefulness in relevant fields.
The remainder of this paper is organized as follows. Section 2

introduces the DL background. Section 3 presents our Dissector
technique for automated within-input validation for DL applica-
tions. Section 4 experimentally evaluates Dissector’s performance
and compares it to existing techniques. Section 5 explores Dis-
sector’s usefulness in relevant fields. Finally, Section 6 discusses
related work in recent years, and Section 7 concludes this paper.

2 BACKGROUND

DL models are used in DL applications mainly for decision-making,
which concerns the model training and input predication the two
phases. We below introduce the background on the two phases as
well as the related DL model architecture to facilitate our subse-
quent discussions.

The model training phase takes training data (e.g., a set of im-
age samples, each with a category label like cat or dog), and in-
stantiates (trains) a DL model to represent the knowledge in the
data by specific DL algorithms like Convolutional Neural Network
(CNN) [12, 53]. Then the input prediction phase takes the trained
DL model (or DL model when with no ambiguity) as the knowledge
to predict labels for new inputs. To distinguish, we name the in-
puts used in training and prediction training samples and predicting
samples, respectively.

A DL model is the key architecture in DL, which was inspired
from human brains with millions of neurons, transferring infor-
mation by electrical impulses across layers [24]. DL models are



Dissector: Input Validation for Deep Learning Applications by Crossing-layer Dissection ICSE ’20, May 23–29, 2020, Los Alamitos, CA, USA

Sub-model Generator (3.2)

Trained DL 
model

Training 
samples

Sub-model pool

Online

Prediction snapshot profiler (3.3) Validity analyzer (3.4)

Predicting sample

Prediction 
snapshot1

Prediction 
snapshot2

Prediction 
snapshot3

Prediction 
profile

PVscore

SVscore1

SVscore2

SVscore3

Confidence score for the
validity degree of the given

predicting sample
Offline

Weight growth

Figure 2: Dissector overview

similarly based on the notion of neurons, which represent features
learned from training samples on neurons organized by layers, as
shown in Fig. 1 (a fully-connected DNN example). In the model
training phase, a DL model learns values for neuron parameters
(e.g., bias and weights), which represent features extracted from
training samples. Then in the input prediction phase, the parame-
ter values are used for calculating and deciding the most suitable
labels for inputted predicting samples. Formally, given a predicting
sample, the DL model generates a probability vector in the form
of {l0: prob0, l1: prob1, ..., lm−1: probm−1}, suggesting probability
probi for this sample being classified into label li (all probabilities
summed up to one if normalized, e.g., by function so f tmax [43]).
Typically, the label with the highest probability is decided as the
final prediction result.

3 THE DISSECTOR APPROACH

DL applications rely on their integrated DL models for input pred-
ication and decision-making, and thus their reliability depends
largely on these models’ prediction accuracies. In this section, we
present our Dissector approach to distinguishing beyond-inputs
from within-inputs so that the concerned DL applications can work
with inputs within their handling capabilities. In the following,
we start with an overview of Dissector and then elaborate on its
detailed methodology.

3.1 Overview

Dissector consists of three main components, namely, sub-model
generator, prediction snapshot profiler, and validity analyzer, as
shown in Fig. 2.

The sub-model generator (Step 1) takes a trained DLmodelM and
its corresponding training samples, and returns a sequence of sub-
models to represent different levels of knowledge in M. Generally,
a sub-modelk encodes the partial knowledge fromM’s first to its
k-th layers. Note that the sub-model generation is conducted only
once in an offline way. Later, the generated sub-models can be
reused for validating predicting samples inputted to this DL model.

The prediction snapshot profiler and validity analyzer work to-
gether for online input validation for distinguishing beyond-inputs
from within-inputs. Given a predicting sample, the profiler (Step 2)

tracks how the sample is interpreted using the sequence of gener-
ated sub-models, and makes snapshots at different layers. It com-
poses a final prediction profile based on the collected snapshots.
Then the analyzer (Step 3) examines the prediction profile and
expects that a within-input should be interpreted by a DL model
with increasing confidence towards its final predication result by
collecting its uniqueness evidence. Otherwise, it is considered to be
a beyond-input. A confidence score (PVscore) is calculated to indi-
cate the likelihood the predicting sample is within the DL model’s
handling capability. With the score, the application built on this
DL model can then decide whether or not to accept this inputted
sample and its corresponding prediction result, according to its
domain-specific requirements.

We elaborate on the three steps in turn below.

3.2 Step 1: Sub-model Generator

Given a trained DL modelM, the first step generates a sequence of
sub-models representing the growing partial knowledge encoded
in this DL model. These sub-models are used later for validating
whether a given input is interpreted by a DL model with increasing
confidence towards to its final prediction result.

As illustrated in Fig. 3, each sub-modelk is composed of two
parts: one part is copied from the original DL model M (first layer
to intermediate layer k) with all structures and parameter values
inherited (e.g., neurons, weights, and bias), and the other part is
the links from layer k to the output layer (with labels inM), which
are newly trained using the original training samples. Generating
the first part is straightforward, while generating the second part
needs some time, depending on M’s scale, but it is done only once.
Here, we adopt a linear regression (LR) structure for the second-part
training as the meta-model, since it is one of the most widely used,
proved effective structures in DNN for the final prediction layer [8,
12, 26, 53, 55], and has been widely suggested in many existing
work [37, 65]. This architecture strictly follows a DLmodel’s typical
design. Specifically, the LR structure in a sub-model refers to a
one-layer fully connected structure with cross entropy as its loss
function.

A DL model can generate as many sub-models as the number of
its intermediate layers. Users can, of course, choose to generate all
or some, depending on their time budgets. Our later experiments
generated only four to seven sub-models, which are already enough
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for achieving quite promising results. Besides, we note that our
Dissector approach is applicable to general DL models: although
we discuss DNN models here, CNN sub-models can be similarly
prepared by treating each convolutional layer as a normal layer.

3.3 Step 2: Prediction Snapshot Profiler

When feeding an input to a given DL model, the second step tracks
how the DL model interprets this input based on the sub-models
generated in the last step. Dissector transforms the problem of
validating this input for the original DL model into that of exam-
ining how this input is interpreted in these generated sub-models,
and obtains a sequence of corresponding probability vectors (nor-
malized by function so f tmax). Since these sub-models represent
the growing partial knowledge encoded in the original DL model,
these probability vectors explain how the DL model interprets the
input layer by layer.

We name each thus obtained probability vector a prediction snap-
shot for the concerned sub-model. By connecting these prediction
snapshots in order, Dissector obtains the whole prediction pro-

file for this particular input going through all the sub-models, i.e.,
{snapshot0, ..., snapshotn−1}, which is used for examining this input’s
validity degree in the next step.

3.4 Step 3: Validity Analyzer

Based on the prediction profile obtained for the given input, the
third step analyzes the validity for each snapshot in this profile
(snapshot validity), and then the validity for thewhole profile (profile
validity), so as to calculate the validity degree for the given input.

By validity degree, we expect that a within-input should be
predicted in a way that the DL model used for predicting this input
should have an increasing confidence when crossing the input layer,
through hidden layers, finally to the output layer. This is based on
our observation that since a within-input fits in the DL model’s
handling capability, the model should well recognize this input in
its prediction process, instead of being confused by two or more
possible guesses during the prediction.

3.4.1 Snapshot validity measurement. For each snapshot in a pre-
diction profile, Dissectormeasures its validity by analyzingwhether
and how its corresponding input’s final prediction result is uniquely
supported by the probability vector in this snapshot.

Suppose that an input I is fed to a DL model M (withm labels)
andM predicts I as label lx . Dissector considers how a snapshot
supports this prediction result. Let the snapshot under consideration
be snapshotk , which is a probability vector, taking the form of {l0:

prob0, l1:prob1, ..., lm−1:probm−1}. There are two cases: lx is already
associated with the highest probability in this vector, or otherwise.

For the first case, Dissector (encouragingly) measures the snap-
shot’s unique support by how much lx ’s associated probability
exceeds the second highest probability in this vector. Let lSH the
label having the best shot to confuse the prediction (i.e., with the
second highest probability). Intuitively, the larger the difference
between the probabilities for label lx and lSH is, the more uniquely

the prediction result lx is supported in this snapshot.
For the second case, lx is not associated with the highest prob-

ability. Dissector (penalizingly) measures the snapshot’s unique
support by how much the actual highest probability (with label lH )
exceeds that of lx in this vector. Similarly, the larger the difference
between the probabilities for label lH and lx is, the less uniquely
the prediction result lx is supported in this snapshot.

Following this intuition, we measure the snapshot validity as
follows (let snapshot[l] return l ’s associated probability):

SV scorek (lx , snapshotk ) =
snapshotk [lx ]

snapshotk [lx ]+snapshotk [lSH ]
, lx with the highest probability;

1 − snapshotk [lH ]

snapshotk [lx ]+snapshotk [lH ]
, otherwise.

The snapshot validity score falls in range [0, 1]. The closer it
is to 1, the more uniquely the current snapshot supports the final
prediction result lx .

3.4.2 Profile validity measurement. Based on the sequence of calcu-
lated snapshot validity scores, Dissector thenmeasures the validity
for the whole prediction profile with respect to our expected in-
creasing confidence for a DL model in interpreting within-inputs
towards their final prediction results.

Since each snapshot corresponds to one particular intermediate
layer in the original DL model M, we normalize these snapshot
validity scores with increasing weights from the first intermediate
layer to the last one (i.e., increasing k), echoing our aforementioned
“increasing confidence”. Therefore, we measure the profile validity
as follows:

PV score(lx ) =

∑n
k=1 SV scorek (lx , snapshotk ) ×weiдhtk∑n

k=1weiдhtk
.

3.4.3 Weight parameter setup. The preceding equation requires the
setup for a sequence of increasing weight values. Instead of giving
ad hoc choices or tuning specially for our experimental subjects,
we try three popular growth types, namely, linear, logarithmic, and
exponential, in our Dissector framework.

Table 1 lists general formulas for calculating weight values with
respect to these three growth types, where x corresponds to number
k of the specific layer (snapshotk ) andy represents its corresponding
weight valueweiдhtk . However, these formulas contain too many
parameters for setup. Fortunately, they are subject to reduction
without losing essentials, since the weight values participate in
both numerators and denominators of the equation. As shown in
Table 1, the reduced formulas contain one (α ) or two (α and β)
parameters only, and in our later evaluation we would investigate
the impacts of their values on Dissector’s performance.
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Table 1: Parameter reduction for modeling weights

Growth type General formula Reduced formulas # para

Linear y = ax + k (1) y = x 2→ 1(2) y = αx + 1

Logarithmic y = a logb (kx + c1) + c2
(1) y = ln x

5→ 2(2) y = α ln x + 1
(3) y = α ln(βx + 1) + 1

Exponential y = aekx+b1 + b2
(1) y = eβx 4→ 2(2) y = αeβx + 1

Generally, for a given input I and a DL model M, Dissector’s
calculated PVscore value representsI’s validity degreewith respect
toM, and this value has been normalized to [0, 1]. The closer the
PVscore value is to one, I is more like a within-input toM (within
M’s handling capability), or otherwise, more like a beyond-input
toM (beyond M’s handling capability).

4 EVALUATION

In this section, we evaluate Dissector and compare it to existing
techniques in distinguishing beyond-inputs from within-inputs for
DL applications.

4.1 Research Questions

We aim to answer the following four research questions:
RQ1 (Effectiveness): How effective is Dissector in distinguish-

ing beyond-inputs from within-inputs, as compared to existing tech-

niques?

RQ2 (Efficiency): How efficient is Dissector in this process, as

compared to existing techniques?

RQ3 (Controlling factors): How do Dissector’s model-aware

treatment, weight growth type, and internal parameters affect its

effectiveness?

RQ4 (Usefulness): How does Dissector help defense against

adversarial inputs and improve a DL model’s actual accuracy in use?

4.2 Experimental Subjects, Design, and Process

We introduce experimental subjects, design, and process below.
Experimental subjects.We used as experimental subjects four

popular image classification datasets in the DL field, namely, MNIST,
CIFAR-10, CIFAR-100, and ImageNet, each associated with a state-
of-the-art DL model, as shown in Table 2. (1) MNIST [25] is an
image database for hand-writing digit classification (ten labels).
It contains 60,000 training samples and 10,000 predicting samples
for testing. Its DL model is LeNet4 [26]. (2) CIFAR-10 [22] is an
image database for object recognition (also ten labels). It contains
50,000 training samples and 10,000 predicting samples. Its DL model
is WRN-28-10 (WRN for short) [64]. (3) CIFAR-100 [22] is similar
to CIFAR-10 but with 100 labels. It contains 50,000 training sam-
ples and 10,000 predicting samples. Its DL model is ResNeXt-29
(8x64d) (ResNeXt for short) [60]. (4) ImageNet [5] is a much larger
database for image recognition (with 1,000 labels). It contains 1.2
million training samples and 50,000 predicting samples. We used
its ILSVRC2012 version [51], and its DL model is ResNet101 [12].

Experimental design.We designed the following two indepen-
dent variables to control the experiments:

Table 2: Descriptions for datasets and associated DL models

Dataset Description # labels # samples DL model

MNIST Digit classification 10 60,000/10,000 LeNet4
CIFAR-10 Object recognition 10 50,000/10,000 WRN
CIFAR-100 Object recognition 100 50,000/10,000 ResNeXt
ImageNet Image recognition 1,000 1,200,000/50,000 ResNet101

• Subject. We used a total of four subjects, each concerning
a dataset and a DL model, namely, MNIST+LeNet4, CIFAR-
10+WRN, CIFAR-100+ResNeXt, and ImageNet+ResNet101.
When with no ambiguity, we refer to each one by the dataset
name only.

• Technique.We compared Dissector with two state-of-the-
art techniques closely related to input validation, namely,
mMutant [58], based on model mutation analysis, and Ma-
halanobis [28], based on data-distance measurement. Dis-
sector was configured into three variants (three weight
growth types), namely, Dissector-linear, Dissector-log, and
Dissector-exp. mMutant was configured into four variants
(four mutation operators), namely, mMutant-GF, mMutant-

NAI, mMutant-WS, and mMutant-NS (no mixture recom-
mended [58]).Mahalanobis was configured using its original
setting [28]. All these techniques were either originally de-
signed or slightly adapted to report a normalized score in [0,
1] for a given input, with a value close to 1 suggesting more
“within” and to 0 more “beyond”.

The three techniques need some setups. (1) Dissector needs to
select DL model layers for sub-model generation. For LeNet4, we
selected all layers since it has only four. For complex models, we
selected part of their layers for efficiency. For WRN and ResNext,
we selected layers after each block, and for ResNet101, we selected
layers uniformly within each convolution group (i.e., layers 10, 22,
46, 70, 91, 100, and 101). (2) mMutant needs to configure a mutation
degree. This parameter was set to 0.05 for MNIST, and 0.005 for
CIFAR-10 as suggested [58]. It was also set to 0.005 for CIFAR-100
as it is similar to CIFAR-10. However, mMutant failed to apply
to ImageNet due to its huge model sizes (incurring OutOfMemo-

ryException (OOM)). Even if one could do so, we estimated that it
needs 1,500–2,000 mutants for ImageNet, which would cost over
1,000GB RAM and significant time overhead (over weeks with our
GPU resources). So we had to give it up. (3) For Mahalanobis, we
followed its original setting [28] to select 10% samples under test to
train its weight parameters, and thus its effectiveness measurement
was based on remaining 90% samples. Similarly, Mahalanobis also
failed to apply to ImageNet, causing OOM exceptions when its
GDA classifier analyses stored and processed intermediate results
concerning training samples.

We designed the following two dependent variables to evaluate
the three techniques:

• AUC. We used the popular Area Under Curve (AUC) based on
True Positive Rate (TPR) and False Positive Rate (FPR) data
to measure how effective a technique is in distinguishing
beyond-inputs from within-ones. To do so, by varying a
threshold from 0 to 1 and comparing it to the technique’s
reported scores for its received inputs, these inputs can be
separated into a corresponding set of within-ones and that
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Table 3: PVscore comparison between incorrectly-predicted samples and correctly-predicted samples

Subject (dataset + DL model) Accuracy

Incorrectly-predicted samples Correctly-predicted samples t -test (indep.)

# samples Avg. Std. v. Med. # samples Avg. Std. v. Med. t value p value

MNIST + LeNet4 98.41% 159 0.52 0.18 0.49 9,841 0.96 0.06 0.98 30.10 1.85e-67
CIFAR-10 + WRN 96.21% 379 0.75 0.16 0.78 9,621 0.94 0.08 0.98 22.46 4.44e-72

CIFAR-100 + ResNeXt 82.15% 1,785 0.61 0.17 0.61 8,215 0.84 0.14 0.88 53.29 ≈ 0.01

ImageNet + ResNet101 77.31% 11,344 0.49 0.22 0.47 38,656 0.76 0.19 0.81 121.59 ≈ 0.0

1 denoting that the corresponding p value is quite close to 0.0, with the difference even smaller than sys.float_info.epsilon in python.

of beyond-ones (both varying). Then by comparing the two
sets of inputs to the ground truths of real within-inputs and
beyond-inputs (discussed later), one can calculate respective
TPR and FPR data and corresponding AUC values (areas
below the curves): the larger, themore effective the technique
is in distinguishing beyond-inputs from within-ones.

• Time overhead.We recorded the time spent by a technique
on its offline work (offline overhead) and online work (online
overhead). The offline work is the sub-model preparation
for Dissector, mutant generation for mMutant, and layer-
wise GDA classifier analysis for Mahalanobis. The online
work is the validity analysis for Dissector, LCR analysis for
mMutant, and distance scoring for Mahalanobis.

Experimental process. We conducted all experiments on a
Linux server with three Intel Xeon E5-2660 v3 CPUs @2.60GHz, 16
Tesla K80 GPUs, and 500GB RAM, running Ubuntu 14.04.

For RQ1 (effectiveness), we calculate AUC values to compare
Dissector with mMutant and Mahalanobis for their effectiveness
in distinguishing beyond-inputs from within-inputs.

For RQ2 (efficiency), we measure offline and online time over-
heads to compare Dissector with mMutant and Mahalanobis for
their feasibilities in the input validation. The offline time overhead
(once) should be acceptable, and the online time overhead (repeated)
should be marginal.

For RQ3 (controlling factors), we study how Dissector’s effec-
tiveness can be affected by its internal factors.

For RQ4 (usefulness), we study how Dissector can help defense
against adversarial inputs and improve a DLmodel’s actual accuracy
in use. For the former, we composed a set of inputs that contain
both training samples and adversarial ones generated from them by
a popular attacker FGSM [10]. We study how effective Dissector
is in distinguishing these two types of samples. For the latter, we
controlled the threshold to study how Dissector improves a DL
model’s actual accuracy in use. We also calculated the number of
samples thus isolated, which should be acceptable.

4.3 Experimental Results and Analyses

We report and analyze experimental results, and answer the pre-
ceding four research questions in turn.

4.3.1 RQ1 (Effectiveness). As mentioned earlier, calculating AUC
values for effectiveness measurement needs the ground truths of
real beyond-inputs and within-inputs. In the following, we first dis-
cuss a candidate for simulating the ground truths and then calculate
AUC values based on it.

Ground truths. We note that the ground truths of real beyond-
inputs and within-inputs do not naturally exist, because otherwise
distinguishing beyond-inputs from within-inputs becomes a trivial
thing and already solved. Regarding this, we consider finding a
candidate for simulating the ground truths. According to earlier
discussions, beyond-inputs probably cause a DL model to predict
in a misleading or wrong way. For example, for the four subjects, a
random guess would cause an accuracy of 10%, 10%, 1%, and 0.1%,
far below their DL models’ accuracies (77–98%, as in Table 3). There-
fore, we consider a proper candidate for beyond-inputs like those
incorrectly-predicted samples, while that for within-inputs like
those correctly-predicted samples. Furthermore, if this simulation
is reasonable, Dissector should be able to distinguish them clearly
by its PVscore measurement. Therefore, we study the two sets of
samples in TableTable 3 to see whether they behave as expected.

From the table, we observe that: (1) the incorrectly-predicted sam-
ples from all predicting samples obtained only a 0.49–0.75 PVscore
value (avg. 0.59), while those correctly-predicted samples obtained
0.76–0.96 (avg. 0.88), with clear differences; (2) for each subject, its
difference is still evident, e.g., 0.52 vs. 0.96, 0.75 vs. 0.94, 0.61 vs.
0.84, and 0.49 vs. 0.76, with the latter close to its model accuracy.

We used t-test [38] to measure how significant such differences
are in a statistic way. With the null hypothesis that “Dissector
generated PVscore values with no significant difference between
incorrectly-predicted and correctly-predicted samples”, we obtained
a series of p-values listed in the last column of Table 3, all of which
are far less than 0.05. Thus one can reject this hypothesis at a 95%
confidence level. With this result, we would later use the two sets
of incorrectly-predicted samples and correctly-predicted samples
for each subject to simulate the ground truths of real beyond-inputs
and within-inputs to facilitate the effectiveness comparison. The
point is that although this simulation is a rough estimation, the logic
still holds (from being a beyond-input to being predicted probably
incorrectly), which suffices for our experimental comparisons.

AUC comparison. As mentioned earlier, we measure AUC val-
ues to compare the three techniques’ effectiveness in distinguishing
beyond-inputs from within-inputs. For Dissector’s three variants,
we first studied their simplest forms, i.e., Dissector-linear (y = x ),
Dissector-log (y = lnx ), and Dissector-exp (y = ex ). Table 4 lists
AUC comparison results (the larger, the better, with range [0, 1]).

From the table, we observe that: (1) for each of the four subjects,
Dissector always obtained the best AUC values, e.g., 0.9869–0.9894
for MNIST, 0.8740–0.8963 for CIFAR-10, 0.8516–0.8726 for CIFAR-
100, and 0.8223–0.8562 for ImageNet; (2) mMutant obtained only
0.9449–0.9770, 0.7346–0.8643, and 0.6827–0.7129 for the first three
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Table 4: AUC comparison among three techniques in distin-

guishing beyond-inputs from within-inputs

Technique MNIST

+LeNet4

CIFAR-10

+WRN

CIFAR-100

+ResNeXt

ImageNet

+ResNet101

Dissector-linear 0.9894 0.8740 0.8516 0.8250
Dissector-log 0.9869 0.8963 0.8641 0.8223
Dissector-exp 0.9878 0.8960 0.8726 0.8562

mMutant-GF 0.9712 0.8643 0.6999 OOM

mMutant-NAI 0.9770 0.8577 0.7129 OOM

mMutant-WS 0.9449 0.8483 0.6827 OOM

mMutant-NS 0.9575 0.7346 0.6871 OOM

Mahalanobis 0.7504 0.8334 0.6692 OOM

the highest AUC value for each subject is made bold.
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Figure 4: Time overhead comparison

subjects (with clear gaps to Dissector), and crashed with OOM ex-
ceptions for the largest subject ImageNet; (3) Mahalanobis obtained
even lower values, 0.7504, 0.8334, 0.6692, for the first three subjects,
respectively, and also failed for the largest subject ImageNet; (4)
the three Dissector variants behaved similarly satisfactorily, and
Dissector-exp worked slightly better for ImageNet; (5) for large
subjects like CIFAR-100 and ImageNet, Dissector behaved more
stably (still above 0.85 and 0.82), but mMutant and Mahalanobis
either led to largely reduced AUC values (below 0.72 and 0.67) or
crashed with OOM exceptions.

Therefore, we answer RQ1 as follows: Dissector was effective
in distinguishing beyond-inputs from within-inputs (AUC: 0.8223–

0.9894), and behaved more stably and suitably than existing tech-

niques for subjects of varying accuracies and sizes.

4.3.2 RQ2 (Efficiency). We then compare the three techniques’
time overheads, for both offline and online work. We reported the
comparison data for the first three subjects in Fig. 4 (ImageNet data
were either incomplete or too large to fit in the figure, discussed
later). For Dissector, we chose Dissector-linear (y = x), and for
mMutant, we chose mMutant-NAI (other variants were similar to
the chosen ones in time overheads).

From Fig. 4(a) and Fig. 4(b), we observe that: (1) regarding the
offline overhead, mMutant always took themost time: 253.2 seconds
for MNIST, 2,756.4 seconds for CIFAR-10, and 3,912.1 seconds for
CIFAR-100, which are significantly more than what Dissector and

Table 5: AUC comparison for studying Dissector’s model-

aware treatment

Analyzing scenario Application scenario

(For MNIST) LeNet4 DNN2 LeNet5

LeNet4 [26] 0.9878 0.9005 (−7.3%) 0.9574 (−3.1%)
DNN2

1 0.9129 (−7.6%) 0.9716 0.9063 (−8.3%)
LeNet5 [26] 0.9720 (−1.6%) 0.9248 (−4.8%) 0.9882

(For CIFAR-10) WRN VGG16 DenseNet

WRN [64] 0.8960 0.8695 (−5.2%) 0.8828 (−2.2%)
VGG16 [53] 0.8837 (−1.4%) 0.9176 0.8759 (−2.9%)
DenseNet [8] 0.8686 (−3.1%) 0.8626 (−6.0%) 0.9024

(For CIFAR-100) ResNeXt VGG16 DenseNet

ResNeXt [60] 0.8726 0.8352 (−3.3%) 0.8425 (−2.4%)
VGG16 [53] 0.7680 (−12.0%) 0.8636 0.7798 (−9.7%)
DenseNet [8] 0.7980 (−8.5%) 0.7997 (−7.4%) 0.8634

(For ImageNet) ResNet101 ResNet50 VGG16

ResNet101 [12] 0.8562 0.8432 (−2.1%) 0.8408 (−0.9%)
ResNet50 [12] 0.8308 (−3.0%) 0.8609 0.8440 (−0.5%)
VGG16 [53] 0.7938 (−7.3%) 0.8012 (−6.9%) 0.8483

1 denoting a simple two-hidden-layer fully connected multilayer neural network.

Mahalanobis cost: 75.7, 317.9 (least), and 318.5 (least) seconds for
the former, and 47.1 (least), 689.1, and 878.1 seconds for the latter;
(2) regarding the online overhead, mMutant again took the most
time: 210.7 milliseconds per sample for MNIST, 2,870.4 milliseconds
for CIFAR-10, and 2,830.6 milliseconds for CIFAR-100, which are
also significantly more than what Dissector and Mahalanobis
cost: 3.3, 3.8 (least), and 4.3 (least) milliseconds per sample for the
former, and 2.8 (least), 166.6, and 194.8 milliseconds for the latter;
(3) altogether, Dissector took only several minutes to complete its
offline preparation, and several milliseconds to validate an input
at runtime, which are very attractive; (4) for the more important
runtime input validation, mMutant had to take 63.3–763.3x time to
that of Dissector, and Mahalanobis took 0.8–45.3x time.

For the largest subject ImageNet with its ResNet101 model, Dis-
sector spent around 90 hours on its offline preparation, and needed
5.8 milliseconds for its online validation per sample. 90 hours are
comparable to the subject’ own DL model’ training time [62]. Since
required only once, the time is acceptable. Dissector’s online over-
head is still marginal (several milliseconds), suggesting that it is
extremely stable even for complex subjects like ImageNet. On the
contrary, both mMutant and Mahalanobis failed to apply to this
subject as explained earlier.

Therefore, we answer RQ2 as follows: Dissector was highly effi-

cient with acceptable offline overhead and marginal online overhead

(several milliseconds), and much faster than existing techniques (up to

12.3x and to 763.3x speedup for offline and online work, respectively).

4.3.3 RQ3 (Controlling factors). We next study how Dissector’s
model-aware treatment (validating inputs with respect to DL mod-
els used in applications) contributes to its effectiveness, and how its
inherent growth type and other parameters affect the effectiveness.

Model-aware treatment. Dissector validates inputs and iden-
tifies beyond-inputs based on its prepared sub-models, which are
derived from DL models used in applications. Thus, Dissector is
naturally model-aware, and we have observed Dissector’s unique
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effectiveness from this treatment earlier. Still, we want to know
how Dissector’s effectiveness would be compromised if the model
its analysis depends on deviates from the model it is applied to.
To be specific, the former model is the one from which Dissec-
tor prepares sub-models, and the latter model is the one that
defines/simulates the sets of real beyond- and within-inputs (i.e.,
ground truths). If Dissector’s model-aware treatment is not nec-
essary, two models being different will not cause the effectiveness
largely compromised; otherwise, it will.

For this part of experiments, we took the best Dissector-exp
for example. Besides, for each subject, we additionally associated it
with two more popular DL models, and thus each dataset was now
with three DL models, as in Table 5 (original DL model is listed at
the first row and first column). Note that these new DL models may
have different accuracies, e.g., for CIFAR-100, the three models had
an accuracy of 82.15%, 68.61%, and 73.97% respectively, exhibiting
the required diversity for experiments.

Table 5 compares AUC values among nine combinations for each
of the four subjects, in which the analyzing scenario refers to the
model Dissector’s analysis depends on and the application scenario
refers to the model it is applied to. From the table, we observe that:
(1) when the analyzing and application scenarios were the same,
Dissector indeed always obtained the best effectiveness results
(diagonal values in each rectangle area, marked in bold); (2) when
the two scenarios were different, AUC values were compromised
by a varying degree of 0.5–12.0%, which is not small; (3) in spite
of scenarios being different, Dissector could still obtain mostly
higher AUC values than existing techniques for scenarios being the
same, e.g., better than the best mMutant-NAI in 67.5% cases, and
better than Mahalanobis in 100% cases.

Therefore, we consider Dissector’s model-aware treatment nec-
essary and important for its best effectiveness. Besides, even if it is
compromised, Dissector could still bring satisfactory results.

Weight growth type and other parameters. As mentioned
earlier, Dissector can be configured into three variants (with three
weight growth types, namely, logarithmic, linear, and exponential).
Besides, it could be further customized by two parameters, α and
β . Previously, we explored only the simplest forms for the three
variants, and now we study the impact of different α and β values
(from 1 to 100).

Table 6 compares the impact of Dissector’s weight growth type
and α and β parameters on its three variant families, according
to the setup in Table 1. From the table, we observe that: (1) three
weight growth types behave similarly with stable AUC values for
each subject (0.0000–0.0085, 0.0000–0.0446, and 0.0000–0.0459 dif-
ferences, respectively); (2) although the exponential growth could
be a bit unstable for some cases, it obtained the best results mostly,
with AUC values highest (0.9377, 0.8855, and 0.8564) for CIFAR-
10+WRN, CIFAR-100+ResNeXt, ImageNet+ResNet101, respectively,
and quite close (only 0.0018 gap) to the highest AUC value (0.9900)
for MNIST+LeNet4, and we owe the results to this type’s nature
(e.g., more aggressive in the growth and validation); (3) AUC values
are all over 0.80, with most (around 76%) over 0.85 and up to 0.9900,
suggesting Dissector’s general effectiveness among a wide range
of parameter values.

The exponential growth seems to more favor complex subjects
(i.e., the latter three subjects). It might be due to the concerned DL

Table 6: AUC comparison for the impact of weight growth

type and other parameters

Growth

type

(α, β ) MNIST

+LeNet4

CIFAR-10

+WRN

CIFAR-100

+ResNeXt

ImageNet

+ResNet101

Linear

y = x 0.9894 0.8740 0.8516 0.8250
(1,-) 0.9897 0.8650 0.8431 0.8250
(10,-) 0.9894 0.8726 0.8505 0.8241
(100,-) 0.9894 0.8738 0.8515 0.8249

Logarith

-mic

y = ln x 0.9869 0.8963 0.8641 0.8223
(1,-) 0.9898 0.8657 0.8411 0.8147
(10,-) 0.9880 0.8894 0.8598 0.8212
(100,-) 0.9871 0.8953 0.8636 0.8222
(1,1) 0.9899 0.8556 0.8414 0.8110
(1,10) 0.9900 0.8534 0.8287 0.8086
(1,100) 0.9900 0.8508 0.8258 0.8067
(10,1) 0.9898 0.8632 0.8393 0.8152
(10,10) 0.9899 0.8557 0.8311 0.8100
(10,100) 0.9900 0.8517 0.8268 0.8073
(100,1) 0.9898 0.8645 0.8308 0.8158
(100,10) 0.9899 0.8560 0.8315 0.8107
(100,100) 0.9900 0.8518 0.8269 0.8074

Exponen

-tial

y = ex 0.9878 0.8960 0.8726 0.8562
(-,1) 0.9878 0.8960 0.8726 0.8562
(-,10) 0.9768 0.9377 0.8855 0.8564
(-,100) 0.9768 0.9377 0.8855 0.8564
(1,1) 0.9882 0.8918 0.8705 0.8561
(1,10) 0.9768 0.9377 0.8855 0.8564
(1,100) 0.9768 0.9377 0.8855 0.8564
(10,1) 0.9878 0.8955 0.8724 0.8564
(10,10) 0.9768 0.9377 0.8855 0.8564
(10,100) 0.9768 0.9377 0.8855 0.8564
(100,1) 0.9878 0.8959 0.8726 0.8562
(100,10) 0.9768 0.9377 0.8855 0.8564
(100,100) 0.9768 0.9377 0.8855 0.8564

models’ structures. For the first subject MNIST+LeNet4, its model
is of relatively simple structure (only four layers), and the linear
and logarithmic growths can well model its weight with normal
growth types. For the latter three complex subjects, their models
are of quite complex structures (e.g., ResNet101 with around one
hundred layers), thus incurring quite complex behaviors in layer-
wise sample predictions, and the exponential growth can better
model their weights with own aggressive growth.

Therefore, we answer RQ3 as follows: Dissector’s model-aware

treatment is necessary and important for its best effectiveness; besides,

its weight growth type and α and β parameters slightly affect its

stableness, but its effectiveness generally holds.

4.3.4 RQ4 (Usefulness). We finally study how Dissector helps
by its input validation in defensing against adversarial inputs and
improving a DL model’s actual accuracy in use.

Defensing against adversarial inputs. We are interested in
whether Dissector can also identify adversarial attacking sam-
ples by its beyond-input recognition. As mentioned earlier, we
used a popular adversarial attacker FGSM [10] to generate adver-
sarial attacking samples (L2 norm adopted and attack step set to
0.016 [23]) based on original predicting samples from the four sub-
jects.Clean sampleswere selected from the predicting samples when
their predictions were correct, and adversarial attacking samples

were selected from the generated ones when their predictions were
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Table 7: AUC comparison among three techniques in identi-

fying adversarial attacking samples

Technique MNIST

+LeNet4

CIFAR-10

+WRN

CIFAR-100

+ResNeXt

ImageNet

+ResNet101

Dissector-linear 0.9979 0.9996 0.9979 0.9966
Dissector-log 0.9980 0.9997 0.9981 0.9962
Dissector-exp 0.9987 0.9998 0.9990 0.9986

mMutant-GF 0.9665 0.7792 0.7998 OOM

mMutant-NAI 0.9752 0.7637 0.7652 OOM

mMutant-WS 0.9441 0.7952 0.7715 OOM

mMutant-NS 0.9557 0.7478 0.7739 OOM

Mahalanobis 0.8152 0.9276 0.9949 OOM

the highest AUC value for each subject is made bold.

incorrect. Then we study whether Dissector can distinguish ad-
versarial attacking samples from clean samples as it did for beyond-
and within-inputs in earlier experiments.

Table 7 lists Dissector’s AUC values on this aspect, and also
compares it to earlier techniques mMutant and Mahalanobis. From
the table, we observe that: (1) when mixing adversarial attacking
samples and clean samples together, Dissector obtained highest
and stable AUC values (always over 0.9962 and up to 0.9998) in iden-
tifying the former from them, outperforming the other techniques
(0.7478–0.9752 for mMutant and 0.8152–0.9949 for Mahalanobis)
for their applicable subjects; (2) mMutant was unstable with AUC
values ranging in 0.7478–0.9752, performing no better than any
Dissector variant (Dissector-exp won in all cases), and failed
for ImageNet due to OOM exceptions; (3) Mahalanobis obtained
better AUC values than mMutant for CIFAR-10 and CIFAR-100, but
behaved worse for MNIST and similarly failed for ImageNet.

As a whole, we consider Dissector very useful (AUC value
nearly one) in identifying adversarial attacking examples by beyond-
inputs, as one of popular DL-based security applications. We owe
this to Dissector’s dedicated design of examining increasing con-
fidence for given inputs, thus able to identify adversarial ones by
profiling and analyzing their whole crossing-layer prediction pro-
cess, since a traditional attack can seldom consider the whole DL
model in a crossing-layer way.

Improving a DL model’s actual accuracy in use. Each DL
model is associated with an accuracy when given a set of predicting
samples for testing (e.g., those listed in Table 3). With Dissector,
the given predicting samples are refined by isolating those beyond-
inputs, and then the remaining ones (within-inputs) can bring a
better accuracy. To distinguish, we name the former original accu-
racy and the latter actual accuracy in use. We are interested in how
much Dissector can help improve the accuracy. Note that this is
just one possible application of Dissector (more discussed later).

We use a threshold to decide whether a predicting sample with
a distinct PVscore value reported by Dissector is a within- (when
above) or beyond- (when below) input. Fig. 5 illustrates how a DL
model’s actual accuracy was improved under different thresholds.
From the figure, we observe that: (1) all three Dissector variants
(linear, logarithmic, and exponential growths with simplest forms)
exhibited clear accuracy improvements with the growth of Dissec-
tor’s threshold value; (2) for subjects MNIST and CIFAR-10, whose
original accuracies were already very high (98.41% and 96.21%),

Dissector’s contributions to their accuracy improvement were rel-
atively slow but steady (finally reaching 99–100%); (3) for subjects
CIFAR-100 and ImageNet, whose original accuracies were some-
what low (82.15% and 77.31%), Dissector’s contributions to their
accuracy improvement were quite impressive (finally by 15–16%
and 19–20%); (4) even with a conservative threshold value of 0.8,
the three Dissector variants realized a satisfactory actual accuracy
of 95–100%, 94–100%, and 91–100%, respectively.

Some applications might concern the number of isolated samples
as the cost for the accuracy improvement. So we also investigated
this issue. Take Dissector-linear (y = x) for example. When one
set the threshold to 0.6 and 0.8, the four subjects’ actual accura-
cies could already be largely improved, e.g., CIFAR-100’s accuracy
improved from 82% to 89% and 96%, respectively. Accordingly, its
number of isolated samples was 14% and 43%. If it was Dissec-
tor-exp, the number of isolated samples was much less, e.g., 9%
and 21%, respectively. Nevertheless, the subject itself also played
an important role on this number, e.g., for MNIST (with the high-
est original accuracy), isolated samples were only 0–1% for both
thresholds and all Dissector variants. As a comparison, when us-
ing other techniques for input validation, we encountered more
isolated samples. For example, when expecting the same 89% ac-
tual accuracy for the CIFAR-100+ResNeXt subject, mMutant-NAI
and Mahalanobis caused 21% and 47% samples being isolated but
Dissector-exp isolated only 9% samples. This suggests that Dissec-
tor’s beyond-input identification is more precise and thus more
cost-effective.

This application does not have to retrain the concernedDLmodel,
and instead brings a transparent accuracy improvement, thus being
very attractive. The fault tolerance idea behind Dissector actu-
ally maximizes the potential of the original DL model about what
it can actually do. Besides the simple treatment of isolating the
identified beyond-inputs, one can also refer to other DL models,
applications, or even manual controls (e.g., for self-driving). This
direction deserves more research efforts.

Therefore, we answer RQ4 as follows: Dissector are useful for
defensing against adversarial inputs and improving a DL model’s

actual accuracy in use.

4.4 Threat Analyses

Our selection of the four subjects, namely, MNIST, CIFAR-10, CIFAR-
100, and ImageNet with their associated DL models, might threaten
the external validity of our experimental conclusions. We tried to
alleviate this threat by the following efforts: (1) the four datasets are
very popular and have been widely used in relevant research [11, 18,
47, 58]; (2) their associated models are also state-of-the-art DL ones;
(3) these datasets and models differ from each other by varying top-
ics (e.g., digit, image, and general object recognitions), labels (from
10 to 1,000), scales (from 70,000 to 1,250,000 samples), model types
(e.g., LeNet4, WRN, ResNeXt, and ResNet101), model layers (from 5
to 101 layers), and model accuracies (from 77.31% to 98.41%), which
make these subjects diverse and representative. Therefore, our ex-
perimental conclusions should generally hold, although specific
data could be inevitably different for other subjects.

Threats to the external validity might also come from our se-
lected techniques for the experimental comparisons, which include
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Figure 5: Accuracy improvement under different thresholds for Dissector

mMutant [58] and Mahalanobis [28]. We note that as we argued ear-
lier, identifying beyond-inputs for a DL application should be from
the perspective of the application and ought to be lightweight run-
time validation. Thus, existing work right focused on this problem
and meeting the restriction can be little (excluding some options,
e.g., DeepRoad [66] and Surprise [18]). We selected mMutant be-
cause it resembles our focus by identifying unqualified inputs by
DL model mutation analysis (software engineering area). Besides,
the work was published in May 2019, as the representative of the
state-of-the-art techniques.We also selectedMahalanobis because it
similarly uses layer-wise information to identify out-of-distribution
samples for DL models based on distance measurements (artificial
intelligence area). The work is also the latest (Dec 2018), closely
related to our problem, as the representative of distance-based and
distribution-based data comparison techniques.

Our internal threat mainly comes from the lack of ground truths
for distinguishing beyond-inputs from within-inputs. We used the
inputs predicted incorrectly and those predicted correctly to simu-
late beyond-inputs and within-inputs, respectively. As discussed
earlier, such estimation might be rough, but since the logic (from
beyond-input to probably incorrect prediction) holds (RQ1), our
experimental conclusions would largely hold. To further alleviate
this threat, we conducted the experiments to study Dissector’s
usefulness (RQ4), which frankly disclosed what Dissector can
indeed help defense against adversarial inputs and improve a DL
model’s actual accuracy in use, even if based on our ground truth
simulation. Considering that our subjects have necessary diver-
sities as discussed above, our experimental conclusions can hold
generally. Still, due to the ground truth problem, we plan to validate
Dissector in more and practical application scenarios.

5 DISSECTOR APPLICATIONS

We discuss potential Dissector applications below:
Tolerating imperfect DL models. DL models can hardly be perfect

for complex application scenarios. Even if they are acceptable for
now, application scenarios can evolve from time to time and cause
the models to behave unexpectedly unsatisfactorily, as discussed
earlier. With an input validation wrapper like Dissector, a DL
application built on such DL models can be substantially improved
by automatically recognizing beyond-inputs with respect to what
these DL models actually do. Especially when the application is
deployed in an unstable environment, such an automated technique
does help in a convenient way.

Refining DL models. For the case DL models themselves have to
be refined, Dissector’s identified beyond-inputs form a critical set
for consideration. This set of inputs are beyond a DL model’s han-
dling capability, and would probably cause misleading or incorrect
predictions. Then users can consider whether and how to use them,
e.g., for expanding the model’s scope by retraining it with these
beyond-inputs, or strengthening its original scope by keeping them
isolated. More issues such as model stability and corner cases can
also be taken into consideration during this refinement process.

Comparing DL models’ accuracies. Traditionally, DL models can
be directly compared by their prediction accuracies with respect
to given samples from an application scenario. With a Dissector-
alike input validation wrapper, the comparison can now have new
considerations. Suppose that models A and B have original accura-
cies of 75% and 80% for this scenario. With Dissector, their actual
accuracies in use might be improved to 90% and 85% instead. This
calls for new research opportunities on how to understand a DL
model’s actual accuracy in practice.

Measuring deployment suitability. A DL application might be
deployed in a complex application scenario, which cannot be fully
anticipated or tested. Based on how many inputs are identified as
beyond-ones as well as the resulting accuracy, Dissector can be
used for suggesting whether and how the concerned DL model
suits its deployment. More applications include assigning the most
suitable DL model from a set of candidates to the scenario, as well
as balancing the assignment of multiple DL models to multiple
application scenarios.

Defensing against adversarial inputs. Adversarial inputs can be
substantial attacks to a DL application, and thus identifying them
is beneficial. Our evaluation shows that although most adversarial
inputs behaved like beyond-inputs, few of them might still pass the
validation and behave like within-ones. Currently, there is strong
evidence [1] showing that taking all adversarial inputs into retrain-
ing could probably bias a DL model. Then this set of adversarial,
yet still within-inputs, becomes an interesting source for critical
model improvement. More research can be initiated on this aspect.

6 RELATEDWORK

The work studied in this paper relates to quality improvement for
DL models and applications. We briefly discuss representative work
in recent years, on data quality assurance, DL-related verification,
testing and debugging, and adversarial attack.

Data quality assurance. One line of work focuses on assuring
quality data for DL models, so as to improve their reliability in use.
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Some work [4, 19–21] focused on data cleaning techniques in order
to prepare qualified training data for instantiating models. Other
work [13, 28, 30, 31] regarded training samples as in-distribution
and refined given new samples by identifying out-of-distribution
ones as outliers a statistic way. This line of work typically focuses
on data characteristics, and seldom considers requirements from
applications built on these data.

DL-related verification. This line of work attempts to formally ver-
ify DL models for their quality. Some work [17, 49] proposed to use
symbolic techniques for abstracting the input space for a DL model,
but could hardly scale to large and complex ones. Some [9, 15, 41]
could work for relatively larger models, but supported only specific
neural networks. The others [14, 48, 59, 67] targeted at security-
critical or safety-critical DL-assisted applications, and verified them
for safety properties. Our work complements this line, by validating
inputs at runtime for better model performance.

Testing and debugging. This third line of work aims to generate
diverse and realistic corner cases to expose possible flaws in DL
models. For example, DeepXplore [47] converted the corner-case
generation problem to a joint optimization one, and searched to-
wards a model’s decision boundaries. More work examined DLmod-
els by testing, e.g., by image transformation [57], input fuzzing [11],
mutation testing [35], and metamorphic testing [66]. To measure
the testing adequacy, various coverage criteria were proposed, in-
cluding the neuron coverage [47, 57], SS coverage [54], neuron- and
layer-level coverage [34], combination dense coverage [36], and
surprise coverage [18]. Interestingly, it was also argued that such
structural coverage criteria for DL models could be misleading [29].
Finally, DL models could be debugged for their flaws by analyzing
biased data distribution [37]. Our work also complements this line,
by runtime validation for tolerating unexpected problems after the
concerned DL models have been tested and deployed.

Adversarial attack. Finally, proposing better DL models against
adversarial attacks is getting hotter. On one hand, adversarial at-
tacking techniques were proposed to generate adversarial sam-
ples with small artificial perturbations to fool DL models, e.g., L-
BFGS [56], FGSM [10], JSMA [45], C&W [3], Uni. perturbation [39],
and DeepFool [40]. On the other hand, defense techniques were
also proposed to identify such fooling samples, e.g., adversarial
sample detection [58], adversarial training [56], foveation-based
defense [32], gradient regularization/masking [33, 42, 50], defensive
distillation [44, 46], and GAN-based defense [27]. They together im-
prove DL models in a recursive way. Our work can also be used for
identifying adversarial attacking samples as one of its application.

7 CONCLUSION

In this paper, we proposed Dissector for effective and efficient
validation of inputs to DL applications. Dissector distinguishes
beyond-inputs from within-inputs by collecting prediction unique-
ness evidence, and works in a model-aware and lightweight way.
The experimental evaluation confirmed Dissector’s unique effec-
tiveness and clear gains over existing techniques. Dissector also
exhibited encouraging usefulness in defensing against adversarial
inputs and improving a DL model’ actual accuracy in use.

Currently, Dissector has to be configured for its growth type
and parameters, although they do not affect much (< 5%). We are

considering guiding the configuration by prediction feedbacks of its
generated sub-models to make Dissector fully automated. Besides,
Dissector needs to be tested in more application scenarios, for
both more practical validation and more usefulness exploration.
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