
INFUSE: Towards Efficient Context Consistency by
Incremental-Concurrent Check Fusion

Lingyu Zhang†‡, Huiyan Wang∗†‡, Chang Xu∗†‡, and Ping Yu†‡
†State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
‡Department of Computer Science and Technology, Nanjing University, Nanjing, China

zly@smail.nju.edu.cn, {why, changxu, yuping}@nju.edu.cn

Abstract—Nowadays applications are getting increasingly at-
tractive by being capable of adapting their behaviors based on
their understanding to running environments (a.k.a. contexts).
However, such capability can be subject to illness or even
unexpected crash, when contexts, for suffering environmental
noises, become inaccurate or even conflict with each other.
Fortunately, various constraint checking techniques have been
proposed to validate contexts against consistency constraints, in
order to guard context consistency for applications in a timely
manner. However, with the growth of environmental dynamics
and context volume, it is getting more and more challenging
to check context consistency in time. In this paper, we propose
a novel approach, INFUSE, to soundly fuse together two lines
of techniques, namely, incremental checking and concurrent
checking, for efficient constraint checking. Realizing such check
fusion has to address the challenges rising from the gap between
the micro analysis for reusable elements in incremental checking
and the macro collection of parallel tasks in concurrent checking.
INFUSE solves the challenges by automatically deciding maximal
concurrent boundaries for context changes under checking (i.e.,
what-correctness problem), and soundly fusing incremental and
concurrent checking for context consistency (i.e., how-correctness
problem), with theoretical guarantees. Our experimental evalu-
ation with real-world data shows that INFUSE could improve
constraint checking efficiency by 18.6x–171.1x, as compared with
existing state-of-the-art techniques.

Index Terms—*Technological, constraint checking, context
consistency, check fusion.

I. INTRODUCTION

Consistency management for software artifacts (e.g., edit
script [1], UML models [2]–[4], and XML documents [5]–
[7]) has received extensive research attention [8]. In the recent
decades, there is an increasing demand for managing the
consistency of contexts, in order to support reliable adapta-
tion behaviors in self-adaptive or context-aware applications.
Unlike traditional software artifacts, contexts, representing an
application’s understanding to its running environment, are
prone to frequent changes, and thus call for efficient constraint
checking techniques for their runtime validation.

The validation is conducted by checking the contexts col-
lected by an application against a set of consistency con-
straints [5], [9] and any constraint violation indicates the
detection of a context inconsistency. Various constraint check-
ing techniques [5], [9]–[12] have been studied with different
efficiency benefits and costs, e.g., xlinkit [5], working in a full

∗
Corresponding authors.

checking way as the correctness baseline, PCC [10], checking
incrementally by reusing previous results, and Con-C [11],
checking concurrently basic units that carry similar workloads.
However, with the growth of environmental dynamics and
context volume, it is getting increasingly challenging to vali-
date context consistency in a timely manner, causing missed
inconsistencies or wrong reports [9].

An intuition is to fuse incremental checking (e.g., PCC [10])
and concurrent checking (e.g., Con-C [11]) for even higher
efficiency. Indeed, they were developed from two orthogonal
dimensions, but their fusion is non-trivial, with no substantial
progress after nearly one decade since their initial proposal.
The challenge probably comes from the following gap: incre-
mental checking analyzes in a fine granularity for reusable
parts in previous checking results, while concurrent checking
requests to maximize parallel tasks. In other words, the former
has to accumulate micro parts (i.e., larger parts not easy for
analysis), but the latter requires macro arrangements (i.e.,
smaller parts not useful for concurrency). If one naively
injects concurrent checking into incremental checking (e.g., by
concurrently conducting the reusable result analysis in a fine
granularity), the performance may instead be compromised
(e.g., even less efficient than incremental checking). On the
other hand, if one aggressively enlarges the analysis granu-
larity of incremental checking, improper grouping of context
changes as a whole can lead to wrong results, denying the
purpose of more efficient checking.

In this paper, we propose INFUSE, (Incremental-
CoNcurrent Fusion ChEcking), to address the two
challenges from the above gap: (1) What-correctness
problem: automatically analyzing and deciding the boundaries
of collected context changes for maximal concurrency (i.e.,
checking these context changes as a whole guarantees to be
correct, as against checking them individually); (2) How-
correctness problem: soundly switching between incremental
and concurrent checking upon the context changes grouped as
a whole for higher efficiency. Both challenges are addressed
with theoretical guarantees.

We experimentally evaluated INFUSE and compared it
to existing constraint checking techniques on dynamic ap-
plication scenarios with real-world data following existing
work [9]–[12]. The experimental results show that INFUSE
could dramatically boost the checking efficiency (up to 18.6x,
105.4x, and 171.1x improvements for light-, median-, and

heavy-workload scenarios, respectively), as compared to ex-
isting techniques. When put into the practical scenario simula-
tion, INFUSE won with high efficiency and 100% correctness
of checking results, while existing techniques caused up to
98.7% false negatives and 96.0% false positives.

In summary, we make the following contributions:
• We proposed a novel constraint checking approach, IN-

FUSE, with incremental-concurrent checking techniques
properly fused.

• We proved INFUSE’s properties, namely, what-
correctness for concurrency maximization, and how-
correctness for fusion soundness, together contributing
to INFUSE’s checking correctness and high efficiency.

• We evaluated INFUSE and compared it to state-of-the-art
techniques, observing substantial efficiency improvement
and desirable checking correctness.

The remainder of this article is organized as follows:
Section II introduces the background and formulates our
problem. Section III elaborates on INFUSE’s methodology
with details. Section IV evaluates INFUSE with real-world
scenarios. Section V discusses the related work in recent years,
and finally Section VI concludes this paper.

II. BACKGROUND

A. Preliminary
We define a context as a piece of information about an

application’s running environment (e.g., location, user, activity,
etc.) [9], [10], [12]. Each context can be modeled as a finite
set of relevant elements. For example, in a package delivery
application [9], [10] that schedules transportation robots across
warehouse, all robots currently in warehouse x can be modeled
by a context Cx = {r1, r2, · · · }, in which ri identifies a specific
robot.

We define a context change to be an update to an existing
context, which can be an addition change or deletion change.
We use symbols (“+”, “−”) to represent them, respectively.
Consider this application with context Cx = {r1, r2}. If robot
r3 enters or r2 leaves the warehouse, we have context changes
<+, Cx, r3> or <−, Cx, r2>.

We use context pool to represent the collection of all
contexts interesting to the application. For the aforementioned
application, its context pool is P = {Cx, Cy}, which considers
warehouses x and y.

To validate contexts, one could define consistency con-
straints [5], [9], which model physical laws or application-
specific requirements [5], [9], [10], and check whether any
constraint is violated (when yes, an inconsistency is detected).
Existing work [9], [10], [12] has mostly followed a first order
logic (FOL) styled language to specify consistency constraints:

f :=∀v ∈ C(f) | ∃v ∈ C(f) |
(f) and (f) | (f) or (f) | (f) implies (f) | not (f) |
bfunc(v1, v2, · · · , vn) | True | False.

Here, C represents a context; vi is a variable, taking an
element from C as its value; the bfunc terminal is a domain-
specific function that takes values of variables as input and

Fig. 1. An illustrative example (Pi is the evolving context pool after each
context change).

returns a Boolean value (True or False). For example, one
may define a consistency constraint like “any robot can only be
in one warehouse at the same time” [9], for the aforementioned
application:

Sloc : ∀vx ∈ Cx(not(∃vy ∈ Cy(Same(vx, vy)))).

Incremental checking [10] examines each context change to
analyze its impact on a constraint’s previous checking result,
while concurrent checking [11] would request multiple context
changes for parallelism. In the following, we analyze the
challenges when one combines the two techniques together.

B. Illustrative Example and Challenges

Consider our package delivery application with two ware-
houses (x and y) and three robots (r1, r2, and r3). Suppose that
initially robot r1 is in warehouse x and r2 in y. Then, robot
r3 enters warehouse y, and r2 leaves y and re-enters y. Next,
robots r3 leaves y, enters x, and leaves x in turn. These robot
movements induced a total of six context changes, with <−,
Cy, r3> (chg′) missed (five changes remaining), as illustrated
in Fig. 1 (such missing-read events could be common in RFID-
enabled sensing [13]–[16]).

When one conducts constraint checking on the context pool
upon each context change (as the individual checking illus-
trates in Fig. 1) against the aforementioned Sloc constraint, a
context inconsistency inc1 would be detected at P4 (suggesting
robot r3 in both warehouses x and y). Incremental checking
can work to speed up the checking upon each context change.

If one applies concurrent checking, multiple context changes
have to be considered for parallelism. Then these changes
are applied together and checked as a whole (as the whole
checking illustrates in Fig. 1). However, checking the final
context pool P5 would report no inconsistency. The inconsis-
tency inc1 is missed (or kept hidden in constraint checking)
due to the interference between chg4 and chg5. Therefore,
we consider the sequence of these five changes invalid for
checking together. Then our first question (challenge) arises:
How does one compose constraint checking tasks that both
maximize the parallelism (i.e., involving more context changes)
and guarantee the validity (i.e., inconsistency never made hid-
den)? Fusing incremental checking and concurrent checking
together (or fusion checking) has to answer this question.

and

∀ 𝑣𝑣𝑥𝑥 ∈ 𝐶𝐶𝑥𝑥 ∀ 𝑣𝑣𝑦𝑦 ∈ 𝐶𝐶𝑦𝑦

(a) Parallel structure

∀ 𝑣𝑣𝑥𝑥 ∈ 𝐶𝐶𝑥𝑥

∀ 𝑣𝑣𝑦𝑦 ∈ 𝐶𝐶𝑦𝑦

(b) Nested structure
Fig. 2. Two structures of consistency constraints

Now suppose that we have obtained a valid con-
straint checking task, which involves four context changes
(chg1, chg2, chg3, chg4). Then, how can one realize both
incremental checking and concurrent checking on these
changes? The former handles these changes in turn according
to their temporal orders, while the latter parallelizes the
handling of these changes without any temporal order. This
could induce natural logical conflicts (e.g., considering that
change chg3 is to add an element deleted by chg2).

To alleviate the complexity, one might consider grouping
context changes according to different contexts they relate
to, e.g., partitioning context changes into context Cx-related
changes and Cy-related changes. Still, checking the two groups
concurrently may be intertwined. For a consistency constraint
illustrated in Fig.2a with a parallel structure, it could be possi-
ble to handle the two groups of context changes concurrently.
However, if the constraint has a nested structure as illustrated
in Fig.2b, the two groups of changes certainly have intertwined
impacts on the constraint (i.e., depends-on or subsumed), as
concurrent checking would induce unexpected consequences.
Therefore, we have the second question (challenge): How can
fusion checking work correctly?

C. Problem Formulation

We formulate the preceding two questions (challenges) into
two problems, namely, what-correctness and how-correctness.

Given a sequence of context changes under checking, (chg1,
chg2, . . .), Pi represents the evolving context pool after apply-
ing change chgi to existing contexts in pool Pi−1 (let P0 be the
initial pool). We use chk(Pi, s) and Fuse-chk(Pi, s) to denote
the results of the ideal checking and our fusion checking when
examining the contexts in Pi against constraint s. The what-
correctness requests that our fusion checking should produce
the same checking results by checking context changes as a
whole, as compared to checking them individually. That is, it
should carefully decide what context changes to check as a
whole, so as to avoid any interference inside these changes.
Given a checking task (T = (chgm, chgm+1, ..., chgn)), the
what-correctness is as follows:

chk(Pn, s) =

n∪
i=m

chk(Pi, s) (1)

The how-correctness requests that our fusion checking should
produce the same checking results by fusing incremental
and concurrent checking together, as compared to checking
directly (e.g., by entire [5], incremental [10], or concurrent
checking [11]). It is as follows:

Fuse-chk(Pn, s) = chk(Pn, s) (2)

Fig. 3. Overview of our INFUSE approach

Our fusion checking addresses the two correctness problems
in the next section.

III. METHODOLOGY

A. Approach Overview

Fig. 3 overviews our fusion checking (INFUSE) approach. It
consists of two parts, namely, WHAT-TO-CHECK and HOW-
TO-CHECK, targeting at our preceding two challenges, re-
spectively. The first part decides boundaries of context changes
that are valid to check as a whole (Section III-B), and the
second part realizes the fusion of incremental and concurrent
checking (Section III-C).

In the first part, INFUSE analyzes the impacts of context
changes of different types, examines what impacts would
cause context inconsistencies hidden, and derives validity
criteria for deciding what context changes to group together. In
the second part, INFUSE checks grouped context changes as a
whole using its own incremental-concurrent fusion semantics
for inconsistency detection.

B. WHAT-TO-CHECK: Task Arrangement

INFUSE decides proper boundaries in a sequence of context
changes, so that each decided group of changes are valid to
check as a whole. “Valid” means that no inconsistency would
be hidden in the constraint checking. Each valid group of
context changes composes a constraint checking task.

To decide the validity, we would first investigate the impacts
of different context changes on the checking of a given
consistency constraint. Specifically, if a context change can
cause the constraint’s evaluation from True to False, it tends
to expose an inconsistency. Otherwise, the change can cause
the constraint’s evaluation from False to True, and it tends to
hide an inconsistency. The insight of INFUSE is to analyze and
avoid the combination of such two context changes (otherwise,
the first inconsistency might thus become hidden), but the
challenge is that INFUSE has to decide it before actual
evaluation. Later, based on such impact analysis, INFUSE
derives validity criteria for constraint checking tasks, and
arranges context changes into proper groups.

We elaborate on our idea in three steps.
Step 1: Impact analysis. We now model more precisely a

context change in a form of < type, context, truthvalue >, i.e.,
with a certain truth value.

Fig. 4. Example of a universal formula.

TABLE I
BASE IMPACT

Context change ∀v ∈ C(f) ∃v ∈ C(f)

<+, C, U> {mTT, mTF, mFF} {mTT, mFT, mFF}
<−, C, T> {mTT, mFF} {mTT, mTF}
<−, C, F> {mFT, mFF} {mTT, mFF}
<−, C, U> {mTT, mFT, mFF} {mTT, mTF, mFF}

Then all context changes can be partitioned into four cases:
<+, C, U>, <−, C, T>, <−, C, F>, and <−, C, U>. Here,
<+, C, U> denotes an addition change to context C, with
its associated formula not evaluated yet (U: Unevaluated);
<−, C, T> denotes a deletion change to context C, with its
associated formula previously evaluated to True (T: True; F:
False). For example, consider constraint ∀v ∈ C(bfunc(v))
and context C = {r1, r2} as illustrated in Fig. 4 (truth values
annotated). The impact of any addition change (e.g., <+, C,
r3>) can be represented by <+, C, U> since the newly element
r3 has not been evaluated yet for bfunc. The impact of a
deletion change has three cases according to the previous truth
value of the element to delete for bfunc: (1) <−, C, T>, if
the element to delete has been evaluated to True, e.g., <−,
C, r2>; (2) <−, C, F>, if the element has been evaluated to
False, e.g., <−, C, r1>; (3) <−, C, U>, when the element is
just added and has not been evaluated yet, e.g., <−, C, r3>.

We note that only universal and existential formulas are
associated with contexts in consistency constraints, and thus
context changes directly affect such formulas (named base for-
mulas). Consider our preceding constraint Sloc (Section II-A).
Change <−, Cy, r2> directly affects the constraint’s existen-
tial quantifier part (∃vy ∈ Cy) and makes formula ∃vy ∈
Cy(Same(vx, vy)) its base formula. In our illustrative example
in Fig. 1, chg1, chg3 and chg4 are three addition changes
and all belong to the impact case <+, Cx, U> or <+, Cy, U>.
Suppose that the constraint has been evaluated on P0. Then
chg2 belongs to the case of <−, Cy, F> and chg5 belongs to
<−, Cx, U>.

Next we analyze how a context change produces its impact
(a.k.a. base impact) to the concerned base formula, and then
track the impact to the whole constraint (a.k.a. overall impact)
containing this formula.

The base impact has four kinds, namely, mTT, mTF, mFT,
and mFF, representing the truth value of a formula keeping
True, changing from True to False, from False to True, and
keeping False, respectively. Table I lists all base impacts that
can be produced by each particular context change to each
possible base formula. Take the universal formula ∀v ∈ C(f)
as an example. Change <+, C, U> can produce all impacts

Auxiliary functions:
- impact, where impact(chg, f) refers to chg’s impact on f .
- base_impact, where base_impact(chg, ∃/∀) follows Table I.
- flip, where flip(mTT) := mFF; flip(mFF) := mTT; flip(mTF) := mFT;
flip(mFT) := mTF;
- flipSet, where flipSet(M) := {flip(m) | m ∈M}.

Tracking rules:
- impact(chg, ∀v ∈ C(f)) =

(1) base_impact(chg, ∀), when chg affects C,
(2) impact(chg, f) ∪ {mFF}, when chg affects f ;

- impact(chg, ∃v ∈ C(f)) =
(1) base_impact(chg, ∃), when chg affects C,
(2) impact(chg, f) ∪ {mTT}, when chg affects f ;

- impact(chg, not (f)) = flipSet(impact(chg, f));
- impact(chg, (f1) and (f2)) =

(1) impact(chg, f1) ∪ {mFF}, when chg affects f1,
(2) impact(chg, f2) ∪ {mFF}, when chg affects f2;

- impact(chg, (f1) or (f2)) =
(1) impact(chg, f1) ∪ {mTT}, when chg affects f1,
(2) impact(chg, f2) ∪ {mTT}, when chg affects f2;

- impact(chg, (f1) implies (f2)) =
(1) flipSet(impact(chg, f1)) ∪{mTT}, when chg affects f1,
(2) impact(chg, f2) ∪ {mTT}, when chg affects f2.

Fig. 5. Tracking rules

except mFT, because adding an element into a context can
never make the universal formula evaluated from False to
True, while <−, C, T> can produce only mTT and mFF,
because deleting an element from a context with truth value
of True can never make the universal formula evaluated from
True to False or from False to True. Other cases can be
explained similarly.

Then we follow the tracking rules in Fig. 5 to decide how the
overall impact of a particular context change on a consistency
constraint depends on the base impact of this change on its
associated base formula.

Take universal formula g := ∀v ∈ C(f) for example. We
consider all four impacts: (1) if a change has impact mTT on
f , it leads to g remaining its previous truth value, i.e., having
impact mTT or mFF; (2) if the change has impact mTF, it can
cause g evaluated to False, i.e., having impact mTF or mFF;
(3) if the change has impact mFF, it makes g keep evaluated to
False, i.e., having impact mFF; (4) if the change has impact
mFT, it can cause g to keep evaluated to False or from False
to True, i.e., having impact mFF or mFT. Combining all cases
together, the impact on the universal formula g should be
impact(f) ∪{mFF}. Recursively, one can continue to track the
impact down to formula f . If the tracking already reaches the
base formula the specific change concerns, then the tracking
can terminate with the associated base impact. Other tracking
rules can be explained similarly.

For example, consider context change chg1 = <+, Cy, r3>
in Fig. 1. We model it by <+, Cy, U>, and analyze its overall

impact on constraint Sloc as follows:

impact(chg1, ∀vx ∈ Cx(not(∃vy ∈ Cy(Same(vx, vy)))))

= impact(chg1, not(∃vy ∈ Cy(Same(vx, vy)))) ∪ {mFF}
= flipSet(impact(chg1, ∃vy ∈ Cy(Same(vx, vy)))) ∪ {mFF}
= flipSet(base_impact(chg1, ∃)) ∪ {mFF}
= flipSet({mTT,mFT,mFF}) ∪ {mFF}
= {mFF,mTF,mTT}

Similarly, the overall impacts of changes chg2, chg3, chg4,
and chg5 in Fig. 1 can be obtained, i.e., {mTT, mFF}, {mTT,
mTF, mFF}, {mTT, mTF, mFF}, and {mTT, mFT, mFF}.

Step 2: Validity criterion derivation. With analyzed im-
pacts of context changes, we proceed to classify them into
three categories according to how they affect the detection of
context inconsistencies.

Definition 1 (inc-exposing change). Given a consistency
constraint s, if the overall impact of a context change contains
mTF but no mFT, it is an inc-exposing change (or E-change),
suggesting possibly exposing a new inconsistency for s.

Definition 2 (inc-hiding change). Given a constraint s, if
the overall impact of a change contains mFT but no mTF, it
is an inc-hiding change (or H-change), suggesting possibly
hiding an existing inconsistency for s.

Definition 3 (inc-irrelevant change). Given a constraint s,
if the overall impact of a change contains neither mFT nor
mTF, it is an inc-irrelevant change (or I-change), suggesting
irrelevant to detecting any inconsistency.

Note that no context change has both types mFT and mTF,
since (1) any base impact contains at most one such type
(Table I), and (2) tracking rules never breaks this property
(Fig. 5). Therefore, E-change, H-change, and I-change are
complete.

Based on the above definitions, if a constraint checking task
contains any ordered E-change (with mTF) and H-change (with
mFT) pair in its sequence of context changes, it is invalid to
check these changes as a whole (i.e., inconsistency possibly
hidden). Based on this observation, we derive our validity
criterion as follows:

Definition 4 (Validity criterion). Given a constraint check-
ing task with a sequence of context changes, if the sequence
contains any ordered E-change and H-change pair (either
contiguous or not), it is an invalid task; otherwise, valid.

Consider our preceding illustrative example in Fig. 1. Con-
text changes chg1 (<+, Cy, U>), chg3 (<+, Cy, U>), and chg4

(<+, Cx, U>) all have the mTF impact (i.e., E-change), change
chg5 (<−, Cy, U>) has the mFT impact (i.e., H-change), and
the remaining change chg2 has neither of them (i.e., I-change).

Then, consider two tasks: T1 = (chg1, chg2, chg3, chg4,
chg5), and T2 = (chg1, chg2, chg3, chg4). T1 contains an E-
change and H-change (chg5) pair, thus invalid. T2 does not
contain any such pair, thus valid. The results match our earlier
analysis in Section II-B.

Step 3: Task arrangement. With the above validity cri-
terion, INFUSE can compose constraint checking tasks with
valid context changes only.

Algorithm 1 explains how to arrange valid constraint check-
ing tasks. Given a consistency constraint s, when context
change chgnew is collected, INFUSE first analyzes its impact
on s to decide its category (Lines 2–8), i.e., E-/H-/I-change.
Then, if chgnew is an H-change, INFUSE examines whether
there is any existing E-change chg in the current task. If yes
(Line 11), INFUSE conducts fusion checking with all existing
changes in the task (details to be discussed later in the HOW-
TO-CHECK part) (Line 12), and finishes this task (s’s new
task starts with chgnew, Lines 13–14). Otherwise, INFUSE
keeps maximizing a constraint checking task until any possible
E-change and H-change pair occurs.

Algorithm 1: Task arrangement
Input : set of consistency constraints S, new context

change chgnew

Output: set of consistency constraints S (updated)
1 for each s ∈ S do
2 p = impact (chgnew, s);
3 if p contains mFT then
4 chgnew.type = H-change;

5 else if p contains mTF then
6 chgnew.type = E-change;

7 else
8 chgnew.type = I-change;

9 if chgnew.type == H-change then
10 for each change chg in s.Task do
11 if chg.type == E-change then
12 fusionchecking(s.Task, s);
13 s.Task.clear();
14 break;

15 s.Task ← append(chgnew);

16 return S;

We give the following theorem to guarantee that INFUSE
always returns the same checking result by its whole checking
of thus arranged tasks, as compared to individual checking.

Theorem 1 (WHAT-Correctness). Given any consistency
constraint and associated context pool, INFUSE produces the
same result for its arranged valid context changes, no matter
it checks these changes as a whole or individually.

Sketch of proof The theorem can be proved by reduction
to absurdity, showing that each result in individual checking
should be a subset of the final result of whole checking
for any INFUSE-composed constraint checking task, because
otherwise, the validity criterion would be broken. The detailed
proof is at our website [17]. □

In the following, we explain how INFUSE fuses incremental
and concurrent checking to efficiently and soundly handle
valid context changes in each task.

C. HOW-TO-CHECK: Check Fusion

Given a valid constraint checking task, INFUSE fuses incre-
mental and concurrent checking and treats all context changes
in the task as a whole for efficiency. INFUSE first decomposes

τ partial[∀v ∈ C(f)]α =
(1) τ0[∀v ∈ C(f)]α, if Affected(f) = F and (ASet = ∅ and DSet = ∅ and USet = ∅).
(2) τ0[∀v ∈ C(f)]α ∧ t1 ∧ · · · ∧ ta,where (t1, · · · , ta) = evalentire(τ [f]bind((v,yj),α) | yj ∈ ASet),

if Affected(f) = F and (ASet ̸= ∅ and DSet = ∅ and USet = ∅).
(3) T ∧ τ0[f]bind((v,x1),α) ∧ · · · ∧ τ0[f]bind((v,xn−a−u),α) ∧ t1 ∧ · · · ∧ ta+u | xi ∈ C − (ASet ∪ USet)),

where (t1, · · · , ta+u) = evalentire(τ [f]bind((v,yj),α) | yj ∈ ASet ∪ USet),

if Affected(f) = F and (DSet ̸= ∅ or USet ̸= ∅).
(4) T ∧ t1 ∧ · · · ∧ tn,where (t1, · · · , tn) = evalpartial(τ [f]bind((v,xi),α) | xi ∈ C),
if Affected(f) = T and (ASet = ∅ and DSet = ∅ and USet = ∅).
(5) T ∧ t1 ∧ · · · ∧ tn,where (t1, · · · , ta+u) = evalentire(τ [f]bind((v,yj),α) | yj ∈ ASet ∪ USet)

and (ta+u+1, · · · , tn) = evalpartial(τ [f]bind((v,xi),α) | xi ∈ C − (ASet ∪ USet)),
if Affected(f) = T and (ASet ̸= ∅ or DSet ̸= ∅ or USet ̸= ∅).

Fig. 6. INFUSE’s partial truth value evaluation semantics for the universal formula.

all changes in a task into several subsets based on their nature,
and then conducts constraint checking by two steps, namely,
truth value evaluation and link generation, which examines
whether the concerned consistency constraint is violated and
why the violation, if any, occurs.

Step 4: Task decomposition. INFUSE first decomposes all
context changes (addition or deletion) in the given constraint
checking task into three subsets, namely, truly added set (or
ASet for short), truly deleted set (DSet) and updated set
(USet) for each consistency constraint. They contain truly
added elements (i.e., not deleted later), truly deleted elements
(not added back later) and updated elements (i.e., deleted
first and added back), respectively. Suppose that context C
eventually becomes C ′ after applying all relevant changes in
task T . Then the three sets can be calculated: ASet = C ′−C,
DSet = C − C ′, and USet = {e|e ∈ C ∩ C ′ ∧ ∃ chg ∈
T (chg =< +/−, C, e >)}.

We define the Affected function to indicate whether a
formula itself or its subformula is affected by the context
changes in a constraint checking task. Given a formula from a
consistency constraint, the Affected function returns T (means
True) if and only if the formula itself or its subformula
references a context involved in the ASet, DSet or USet
associated with this constraint; otherwise, F (means False).
INFUSE would rely on the three subsets to decide when
to switch between incremental checking (by partial checking
semantics later) and concurrent checking (by entire checking
semantics later). The checking is composed of the truth value
evaluation (returning T or F) and link generation (returning
links [10]). The following gives an example link for our pre-
ceding inconsistency detected in the illustrative example (inter-
esting readers can obtain more comprehensive explanations to
links at our website [17]): (violated, {(vx = r3), (vy = r3)}).

Step 5: Truth value evaluation. We use τINFUSE[s] to repre-
sent INFUSE’s truth value evaluation on consistency constraint
s. τINFUSE starts with incremental checking by invoking its
partial checking semantics, i.e., τINFUSE[s] = τpartial[s]α. Here,
α is the variable assignment, which is empty at the beginning
and updated later by the bind function when evaluating
universal or existential subformula in constraint s to add new

τ entire[∀v ∈ C(f)]α =
T ∧ τentire[f]bind((v,x1),α) ∧ · · · ∧ τentire[f]bind((v,xn),α)|xi ∈ C

Fig. 7. INFUSE’s entire truth value evaluation semantics for the universal
formula.

evalentire(τ [f]bind((v,xi),α) | xi ∈ Set) =
(1) τentire[f]bind((v,x1),α) ∥ · · · ∥ τentire[f]bind((v,xs),α),
if ∀v ∈ C(f) is a concurrent point;
(2) τentire[f]bind((v,x1),α) ; · · · ; τentire[f]bind((v,xs),α),
otherwise.

evalpartial(τ [f]bind((v,xi),α) | xi ∈ Set) =
(1) τpartial[f]bind((v,x1),α) ∥ · · · ∥ τpartial[f]bind((v,xs),α),
if ∀v ∈ C(f) is a concurrent point;
(2) τpartial[f]bind((v,x1),α) ; · · · ; τpartial[f]bind((v,xs),α),
otherwise.

Fig. 8. Semantics of the eval functions (partial and entire checking)

variable bindings into α. Due to the page limit, we take the
universal formula as an example to explain INFUSE’s truth
value evaluation. A full treatment of all formula types is
accessible at our website [17].

Consider universal formula ∀v ∈ C(f). Suppose that all
context changes in a constraint checking task have been
decomposed into related ASet, DSet, and USet. Fig. 6 gives
INFUSE’s partial truth value evaluation on semantics (five
cases).
(1) If no change affects the universal formula or its sub-

formula, then this formula’s previous truth value τ0 is
reusable.

(2) If the changes affect the universal formula only by adding
new elements into context C only, then this formula’s
previous truth value τ0 is reusable, and one can update it
with evaluation results of the new elements from ASet,
by the evalentire function in Fig. 8 and τentire semantics in
Fig. 7 (“entire” due to new elements (no reusable results);
concurrent evaluations may be applied (explained later)).

(3) If the changes affect the universal formula only by
deleting existing elements from, or updating them in,

Lpartial[∀v ∈ C(f)]α =
(1) L0[∀v ∈ C(f)]α, if Affected(f) = F and (ASet = ∅ and DSet = ∅ and USet = ∅).
(2) L0[∀v ∈ C(f)]α ∪ ({(violated, {v, y1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, ya′})} ⊗ la′),

where (l1, · · · , la′) = genentire(L[f]bind((v,yj),α) | yj ∈ ASet ∧ τ [f]bind((v,yj),α) = F),
if Affected(f) = F and (ASet ̸= ∅ and DSet = ∅ and USet = ∅).
(3) ({(violated, {v, y1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, ya′+u′})} ⊗ la′+u′)∪
{l | l ∈ {(violated, {(v, xi)})} ⊗ L0[f]bind((v,xi),α)}| xi ∈ C − (ASet ∪ USet) ∧ τ [f]bind((v,xi),α) = F,
where (l1, · · · , la′+u′) = genentire(L[f]bind((v,yj),α)| yj ∈ ASet ∪ USet ∧ τ [f]bind((v,yj),α) = F),

if Affected(f) = F and (DSet ̸= ∅ or USet ̸= ∅).
(4) ∅ ∪ ({(violated, {v, x1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, xn′})} ⊗ ln′),

where (l1, · · · , ln′) = genpartial(L[f]bind((v,xi),α) | xi ∈ C ∧ τ [f]bind((v,xi),α) = F),
if Affected(f) = T and (ASet = ∅ and DSet = ∅ and USet = ∅).
(5) ∅ ∪ ({(violated, {v, y1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, yn′})} ⊗ ln′),

where (l1, · · · , la′+u′) = genentire(L[f]bind((v,yj),α) | yj ∈ ASet ∪ USet ∧ τ [f]bind((v,yj),α) = F)
and (la′+u′+1, · · · ln′) = genpartial(L[f]bind((v,xi),α) | xi ∈ C − (ASet ∪ USet) ∧ τ [f]bind((v,xi),α) = F),

if Affected(f) = T and (ASet ̸= ∅ or DSet ̸= ∅ or USet ̸= ∅).

Fig. 9. INFUSE’s partial link generation semantics for the universal formula.

Lentire[∀v ∈ C(f)]α =
{l | l ∈ {(violated, {(v, xi)})} ⊗ Lentire[f]bind((v,xi),α)}
| xi ∈ C ∧ τ [f]bind((v,xi),α) = F).

Fig. 10. INFUSE’s entire link generation semantics for the universal formula.

context C, then the evaluation results of the remaining
elements in C (i.e., C − (ASet ∪ USet)) are reusable,
and those of the other elements should be calculated by
the evalentire function similarly.

(4) If the changes affect the subformula only, then the eval-
uation results of all elements in C should be updated by
the evalpartial function in Fig. 8 (“partial” due to elements
not changed (some reusability possible)).

(5) Otherwise, the changes affect both the universal formula
and its subformula, then one has to update the evaluation
results of unchanged elements (i.e., C− (ASet∪USet))
by the evalpartial function and those of changed elements
((ASet ∪ USet)) by the evalentire function.

We note that in the evalentire and the evalpartial functions,
concurrent checking can be applied to conduct parallel eval-
uations as in Fig. 8 (“∥” means concurrent and “;” means
sequential), since these evaluations are independent of each
other.

We consider a universal or existential formula with its
context affected by changes a concurrent point, which would
incur the invocation of the evalentire or evalpartial function and
also feasible for initiating the concurrent checking in INFUSE.

For our preceding constraint Sloc and a checking task
T = (chg1, chg2, chg2, chg4), these changes affect both the
universal formula (i.e., ∀vx ∈ Cx) and the inner existential
formula (i.e., ∃vy ∈ Cy) in Sloc. They are both candidates
for initiating concurrent checking. INFUSE can choose both
or the outermost one for the cost concern.

Step 6: Link generation. Similarly, link generation
LINFUSE[s] in INFUSE starts with incremental checking by

genentire(L[f]bind((v,xi),α)|xi ∈ Set ∧ τ [f]bind((v,xi),α) = F)
(1) Lentire[f]bind((v,x1),α) ∥ · · · ∥ Lentire[f]entire((v,xs),α),
if ∀v ∈ C(f) is a concurrent point.
(2) Lentire[f]bind((v,x1),α) ; · · · ; Lentire[f]bind((v,xs),α),
otherwise.

genpartial(L[f]bind((v,xi),α) | xi ∈ Set ∧ τ [f]bind((v,xi),α) = F)
(1) Lpartial[f]bind((v,x1),α) ∥ · · · ∥ Lpartial[f]bind((v,xs),α),
if ∀v ∈ C(f) is a concurrent point.
(2) Lpartial[f]bind((v,x1),α) ; · · · ; Lpartial[f]bind((v,xs),α),
otherwise.

Fig. 11. Semantics of the gen functions (partial and entire checking)

invoking its partial checking semantics, i.e., LINFUSE[s] =
Lpartial[s]α.

Links are generated to explain why a consistency constraint
has been violated or satisfied, in a form of (linkType, variable
assignments). The linkType is violated or satisfied, corre-
sponding to the evaluated truth value of False or True, and
variable assignments disclose that the violation or satisfaction
occurs under what kind of variable bindings (recall our preced-
ing example of link (violated, {(vx, r3), (vy, r3)})). Similarly,
Fig. 9 gives INFUSE’s partial link generation semantics for
the universal formula (five cases simiplified; a full treatment
of all formula types is accessible at our website [17]).
(1) If no change affects the universal formula or its subfor-

mula, this formula’s previous link result L0 is reusable.
(2) If the changes affect the universal formula only by adding

new elements, this formula’s previous link result L0 is
reusable and one can update it with the link results of
the new elements, by the genentire function in Fig. 11
and and Lentire semantics in Fig. 10.

(3) If the changes affect the universal formula only by
deleting or updating existing elements, the link results
of the remaining elements are reusable, and those of
the other elements should be calculated by the genentire

function similarly.
(4) If the changes affect the subformula only, the link re-

sults of all elements should be updated by the genpartial
function in Fig. 11.

(5) Otherwise, the changes affect both the universal formula
and its subformula, one has to update the link results of
unchanged elements by the genpartial function and those
of changed elements by the genentire function.

Similarly, the genentire and genpartial functions can work
concurrently for efficiency at concurrent points. In the follow-
ing, we give the second theorem to guarantee that INFUSE
soundly fuses incremental and concurrent checking semantics.

Theorem 2 (HOW-Correctness). Given any consistency con-
straint and associated context pool, INFUSE produces the
same result by its check fusion semantics, as existing constraint
checking techniques do.

Sketch of proof The complete proof is tedious. Basically,
we prove that INFUSE works the same in terms of checking
results (i.e., truth values and generated links) as full checking
(ECC [5]), incremental checking (PCC [10]), and concurrent
checking (Con-C [11]), for all seven formula types. The
detailed proof is at our website [17]. □

As a summary, INFUSE conducts constraint checking with
WHAT-Correctness for concurrency maximization and HOW-
Correctness for fusion soundness. We next evaluate how this
effort brings efficiency improvement.

IV. EVALUATION

In this section, we evaluate INFUSE’s performance and
compare it with existing constraint checking techniques.

A. Research Questions

W aim to answer the following three research questions:
• RQ1 (Motivation): How do existing constraint checking

techniques behave when handling large-volume dynamic
contexts?

• RQ2 (Effectiveness): How effective is INFUSE in con-
straint checking for detecting context inconsistencies, as
compared with existing techniques?

• RQ3 (Practical Usage): How effective is INFUSE in
constraint checking under real-life settings?

B. Experimental Design and Setup

Application. For fair comparisons, we used the taxi applica-
tion, SmartCity, as our experimental subject, following existing
work [9]–[12]. The application used massive taxi-driving data
for smart route guidance.

Contexts. The application was accompanied with data con-
cerning 2,716 vehicles monitored in a continuous period of
24 hours, i.e., 4.3 million raw driving data lines (containing
vehicle id, GPS coordinates, driving speed and orientation,
and service status). They correspond to 25.6 million context
changes as modeled in the application, with varying workloads
across different hours. To alleviate the experimental cost,
we selected three distinct groups of data with light, median,

and heavy workloads, representing the hours of 4am–5am
(311,240 context changes), 9am–10am (843,686 changes),
and 5pm–6pm (1,664,900 changes), respectively. The average
intervals between consecutive changes are 11.6, 4.3, and 2.2
milliseconds (ms), respectively.

Constraints. We used all 48 consistency constraints asso-
ciated with the application, also studied in existing work [9],
[10]. They cover all formula types in the constraint language.

Process. In experiments, contexts are fed to the application
with a middleware layer in between, which checks the contexts
for consistency. We compare INFUSE with existing constraint
checking techniques (ECC, PCC, and Con-C), using both
their original versions (subscript “O”) [10], [11] and and
variants enhanced by GEAS (subscript “G”) [9]. We also com-
pared INFUSE with a naïve implementation INFUSE0 of the
incremental-concurrent idea, which directly split incremental
checking into parallel computing units (i.e., without INFUSE’s
concurrency maximization).

Setup. We design three independent variables:

• Checking technique. We compare eight techniques or
variants, namely, ECCO, ECCG, Con-CO, Con-CG,
PCCO, PCCG, INFUSE0, and INFUSE.

• Checking workload. We use three constraint checking
workloads, namely, light, median, and heavy, as afore-
mentioned.

• Running mode. We study two running modes, namely,
offline and online. With the former, next context changes
are fed only when previous changes have been han-
dled (comparing true efficiency differences). With the
latter, context changes are fed strictly according to their
timestamps, no matter whether previous changes have
been handled or not (possibly causing false negatives or
positives).

We design three dependent variables:

• Checking time. It measures the total time spent on con-
straint checking.

• False negative rate (RFN). It measures the proportion of
missed context inconsistencies against all inconsistencies
that should be reported.

• False positive rate (RFP). It measures the proportion
of wrong context inconsistencies against all reported
inconsistencies.

All experiments were conducted on a commodity PC with
an AMD Ryzen 5600X 6-Core Processor with 32GB RAM,
installed with MS windows 10 Professional and Oracle Java 8.

To answer RQ1, we compare six existing constraint check-
ing techniques and INFUSE0 on the heavy-workload con-
texts under the offline mode to observe their performance.
To answer RQ2, we compare all eight constraints checking
techniques on all three workload contexts under the offline
mode, measuring the checking quality (by reported inconsis-
tencies) and efficiency (by checking time). To answer RQ3,
we compare all eight constraints checking techniques on
all three workload contexts under the online mode (real-life

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0
0

20
40
60
80

100
120
140

C
he

ck
in

g
tim

e
(h

) 137.7

19.1

68.0

11.2 5.9 3.3 5.6

Fig. 12. Checking time comparison for the seven techniques on the heavy-
workload contexts (the red dashed line represents the one-hour limit)

timestamps), measuring the checking quality (by false negative
and positive rates) and efficiency (by checking time).

C. Experimental Results

We answer the three research questions in turn.
1) RQ1 (Motivation): We compared the checking time

of the seven constraint checking techniques on the heavy-
workload contexts in Fig. 12.

We observe that the checking time varied significantly
for different constraint checking techniques, e.g., ECC up
to 19.1–137.7 hours, Con-C for 11.2–68.0 hours, and PCC
for 3.3–5.9 hours. We note that the time limit for handling
this hour of contexts is one hour only, as illustrated by the
red dashed line, and thus none of these techniques fulfilled
the requirement, e.g., the worst case of ECCO took nearly
six days! This strongly calls for more efficient constraint
checking techniques. Besides, as INFUSE0 shows, directly
splitting incremental checking into parallel computing units
did not bring significant improvement, behaving even worse
than PCCG.

Therefore, we answer RQ1 as follows: All existing con-
straint checking techniques and naïve implementation of
the incremental-concurrent idea failed to deliver satisfactory
checking efficiency.

2) RQ2 (Effectiveness): We compared the checking time
of INFUSE and the seven techniques on all three workload
contexts in Fig. 13. As the comparison was under the offline
mode, all context changes were safely checked in turn, and
thus all techniques obtained correct inconsistency detection
results (this may not be true for the online mode later).
Therefore, we focus on the checking time comparison here.

From the figure, we observe that: (1) although different
workloads brought greatly varying checking time (from sec-
onds to hours, almost 500x difference), INFUSE behaved
significant and stable efficiency improvement for all workload
contexts (always most efficient), e.g., 0.0x–18.6x improvement
for the light workload, 2.4x–105.4x for median, and 3.1x–
171.1x for heavy; (2) for all three workloads, INFUSE’s
checking time kept satisfactory (5.7 seconds, 7.7 minutes,
and 0.8 hours, respectively), less than the one-hour limit; (3)
with the growth of the checking workload, INFUSE exhibited
increasing superiority over all other techniques, e.g., from an
efficiency improvement up to 18.6x, to 105.4x, and to 171.1x,
which is impressive; (4) when comparing INFUSE with the
naïve implementation INFUSE0, their difference was large and

kept increasing, e.g., 5.7 s vs. 8.4 s (67.9%), 7.7 min vs.
46.7 min (16.5%), and 0.8 h vs. 5.6 h (14.3%). We owe all
these achievements to INFUSE’s concurrency maximization
and fusion soundness.

Therefore, we answer RQ2 as follows: INFUSE worked
significantly efficient, achieving up to 18.6x, 105.4x, and
171.1x improvements for different workloads, as compared
with existing constraint checking techniques.

3) RQ3 (Practical Usage): We also compared INFUSE
with the other seven techniques under an online mode, which
simulated real-life context change scenarios. We focus on the
checking quality (by false negative and positive rates RFN

and RFP) and efficiency (by checking time). Table II lists the
comparison results.

TABLE II
COMPARISONS AMONG ALL TECHNIQUES UNDER THE ONLINE MODE.

Workload Checking
techniques

Oracle
incs (#)

Reported
incs/* (#) Tcost(s) RFN (%) RFP (%)

Light

ECCO

3,254

3,254 128.6 0.0% 0.0%
Con-CO 3,254 54.3 0.0% 0.0%
PCCO 3,254 12.8 0.0% 0.0%
ECCG 3,254 26.9 0.0% 0.0%

Con-CG 3,254 16.9 0.0% 0.0%
PCCG 3,254 13.1 0.0% 0.0%

INFUSE0 3,254 13.1 0.0% 0.0%
INFUSE 3,254 10.8 0.0% 0.0%

Median

ECCO

21,436

8,647/694* 3,850.9 96.8% 92.0%
Con-CO 14,209/897* 3,593.9 95.8% 93.7%
PCCO 20,942/19,369* 1,513.7 9.6% 7.5%
ECCG 20,412/1,415* 3,588.4 93.4% 93.1%

Con-CG 20,779/19,293* 1,950.8 10.0% 7.2%
PCCG 21,377/19,414* 1,099.7 9.4% 9.2%

INFUSE0 20,922/19,371* 1,588.5 9.6% 7.4%
INFUSE 21,436 456.6 0.0% 0.0%

Heavy

ECCO

29,642

4,934/392* 4,032.1 98.7% 92.1%
Con-CO 6,611/463* 3,748.2 98.4% 93.0%
PCCO 22,574/1,028* 3,410.8 96.5% 95.5%
ECCG 14,617/801* 3,574.8 97.3% 94.5%

Con-CG 20,824/957* 3,375.5 96.8% 95.4%
PCCG 29,115/1,178* 3,594.4 96.0% 96.0%

INFUSE0 22,302/1,013* 3,463.2 96.6% 95.5%
INFUSE 29,642 2,954.6 0.0% 0.0%

* represents the number of true positives among reported inconsistencies.
If the slash “/” is omitted, all reported inconsistencies are true positives.

From the table, we observe that: (1) For the light workload,
all checking techniques reported correct inconsistency results,
but INFUSE took the least time, 10.8 seconds, 17.6–91.6%
less than other techniques; (2) For the median workload,
ECCO, Con-CO, and ECCG were subject to severe quality
problems with over 90% false negative and positive rates,
and PCCO, Con-CG, PCCG, and INFUSE0 suffered moderate
quality problems with around 7%–10% false negative and
positive rates, while INFUSE behaved perfectly with both
zero false negative and positive rates, by taking still the least
time; (3) For the heavy workload, all checking techniques
took much more time, but still produced even worse results
(92%–99% false negative and positive rates), except INFUSE,
which achieved an amazing victory of still both zero false
negative and positive rates. This suggests INFUSE’s highly
stable performance under very high workloads.

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse
0

20

40

60

80

100

C
he

ck
in

g
tim

e
(s

)

111.5

16.7

57.8

10.6 7.4 5.7 8.4 5.7

(a) Light workload (unit: second or s)

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse
0

100
200
300
400
500
600
700
800

C
he

ck
in

g
tim

e
(m

in
)

819.3

121.8

398.5

61.5 44.2 26.4 46.7 7.7

(b) Median workload (unit: minute or min)

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse
0

20

40

60

80

100

120

140

C
he

ck
in

g
tim

e
(h

)

137.7

19.1

68.0

11.2 5.9 3.3 5.6 0.8

(c) Heavy workload (unit: hour or h)
Fig. 13. Checking time comparison for all checking techniques on all workload contexts.

Therefore, we answer RQ3 as follows: INFUSE worked still
significantly efficient under real-life dynamic scenarios with
zero false positive and negative, while other techniques could
miss up to 98.7% and misreport up to 96.0% inconsistencies.

D. Threats Analyses and Discussion

Although only one application was studied in the exper-
iments, we tried to alleviate the concerned threats: (1) The
application was also used in existing work [9]–[12], with the
same set of consistency constraints and contexts to facilitate
comparisons (fair); (2) We used all 48 consistency constraints,
which cover all those used in existing work’s experiments
(comprehensive), and these constraints cover all formula types
in the constraint language (complete); (3) Three groups of
contexts were selected to represent different workloads to
examine different constraint checking techniques (representa-
tive). Besides, to avoid possible bias, we (re)implemented all
constraint checking techniques under the same I/O interface
and data structures. We would later release our implementa-
tions to facilitate follow-up research.

V. RELATED WORK

Our software engineering community has extensively stud-
ied the problem of consistency management for software
artifacts, which could involve different development processes,
e.g., software refactoring [18], method name suggestion [19],
agile model-based development [20], or the whole software
engineering process [21]. Some pieces of work focuses on
managing the consistency of traditional software artifacts, like
edit scripts [1], UML models [2]–[4], XML documents [5]–
[7], and distributed source code [22], which are featured as
being typically static or evolving slowly. Others tackle more
dynamic artifacts in context-aware systems [23], attention-
aware systems [24], and safety-critical systems [25]. Recently,
the latter line of work receives increasing attention, and we
are working along it with extensive application scenarios
like Pollen Wise [26], Humanoid Companion Robot [27],
and self-driving vehicle systems [28], [29]. Besides detecting
inconsistencies in software artifacts, a relevant aspect of efforts
is around resolving the inconsistencies by heuristics [30]–
[32] and fixing strategies [33]–[37]. This also boosts the
development of accompanying frameworks or supporting in-
frastructures like Cabot [38], Adam [39], and Lime [40].

Our work in this paper focuses on efficiently and effectively
detecting inconsistencies in dynamic application contexts. On
this particular aspect, various techniques work with varying

efficiency gains and costs. For example, xlinkit [5], works in
a full checking way, as the correctness baseline; PCC [10]
checks incrementally by reusing previous results; Con-C [11]
checks concurrently on units with similar workloads. All these
are useful but gradually becoming less effective, with the
continuous growth of environmental dynamics and context
volume. Regarding this, GEAS [9] was proposed to cleverly
schedule the checking of multiple context changes together to
help accelerate a spectrum of existing techniques. Our work
resembles this line, but builds on dynamic validity criteria
derived from incremental and concurrent checking, different
from GEAS, which builds only on static constraint informa-
tion. As a result, INFUSE works even more efficiently than
any existing constraint checking technique, either originally
or combined with GEAS, as our experimental results show.
INFUSE’s idea opens a new direction to further improve con-
straint checking techniques. Our work exactly works along this
line, trying to wisely fuse existing incremental and concurrent
checking for even higher efficiency and better practical usages.

VI. CONCLUSION

In this work, we studied the efficient context inconsistency
detection problem. We proposed a novel INFUSE approach,
which on one hand automatically identifies valid context
change groups for concurrency maximization, and on the other
hand soundly fuses incremental and concurrent checking for
reuse maximization. This effort works on both the constraint
checking level and checking scheduling level, thus outperform-
ing any existing constraint checking technique and checking
scheduling strategy, as well as their direct combinations,
realizing an 18.6x–171.1x efficiency improvement with quality
guarantees. In future, we plan to more extensively validate
INFUSE on comprehensive application scenarios, and explore
possible finer-granularity balancing tunning inside the fusion
checking for unexpected workload dynamics.

ACKNOWLEDGMENT

This work was supported by the Natural Science Foundation
of China under Grant Nos. 61932021 and 62072225, and the
Leading-edge Technology Program of Jiangsu Natural Science
Foundation under Grant No. BK20202001. The authors would
also like to thank the support from the Collaborative Innova-
tion Center of Novel Software Technology and Industrializa-
tion, Jiangsu, China.

REFERENCES

[1] T. Kehrer, U. Kelter, and G. Taentzer, “Consistency-preserving edit
scripts in model versioning,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, E. Denney, T. Bultan,
and A. Zeller, Eds. IEEE, 2013, pp. 191–201. [Online]. Available:
https://doi.org/10.1109/ASE.2013.6693079

[2] R. S. Bashir, S. P. Lee, S. ur Rehman Khan, V. Chang, and S. Farid,
“UML models consistency management: Guidelines for software quality
manager,” Int. J. Inf. Manag., vol. 36, no. 6, pp. 883–899, 2016.
[Online]. Available: https://doi.org/10.1016/j.ijinfomgt.2016.05.024

[3] N. Messaoudi, A. Chaoui, and M. Bettaz, “An approach to UML
consistency checking based on compositional semantics,” Int. J. Embed.
Real Time Commun. Syst., vol. 8, no. 2, pp. 1–23, 2017. [Online].
Available: https://doi.org/10.4018/IJERTCS.2017070101

[4] B. Wei and J. Sun, “Leveraging SPARQL queries for UML consistency
checking,” Int. J. Softw. Eng. Knowl. Eng., vol. 31, no. 4, pp. 635–654,
2021. [Online]. Available: https://doi.org/10.1142/S0218194021500170

[5] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: a
consistency checking and smart link generation service,” ACM Trans.
Internet Techn., vol. 2, no. 2, pp. 151–185, 2002. [Online]. Available:
https://doi.org/10.1145/514183.514186

[6] S. P. Reiss, “Incremental maintenance of software artifacts,” IEEE
Trans. Software Eng., vol. 32, no. 9, pp. 682–697, 2006. [Online].
Available: https://doi.org/10.1109/TSE.2006.91

[7] H. A. H. Handley, W. Khallouli, J. Huang, W. Edmonson, and
N. Kibret, “Maintaining the consistency of sysml model exports
to XML metadata interchange (XMI),” in IEEE International
Systems Conference, SysCon 2021, Vancouver, BC, Canada, April
15 - May 15, 2021. IEEE, 2021, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/SysCon48628.2021.9447105

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011, T. Gyimóthy
and A. Zeller, Eds. ACM, 2011, pp. 168–178. [Online]. Available:
https://doi.org/10.1145/2025113.2025139

[9] H. Wang, C. Xu, B. Guo, X. Ma, and J. Lu, “Generic adaptive
scheduling for efficient context inconsistency detection,” IEEE Trans.
Software Eng., vol. 47, no. 3, pp. 464–497, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2898976

[10] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Partial constraint
checking for context consistency in pervasive computing,” ACM Trans.
Softw. Eng. Methodol., vol. 19, no. 3, pp. 9:1–9:61, 2010. [Online].
Available: https://doi.org/10.1145/1656250.1656253

[11] C. Xu, Y. Liu, S. C. Cheung, C. Cao, and J. Lv, “Towards context
consistency by concurrent checking for internetware applications,” Sci.
China Inf. Sci., vol. 56, no. 8, pp. 1–20, 2013. [Online]. Available:
https://doi.org/10.1007/s11432-013-4907-5

[12] C. Xu, W. Xi, S. Cheung, X. Ma, C. Cao, and J. Lu, “Cina: Suppressing
the detection of unstable context inconsistency,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 842–865, 2015.

[13] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin, “Adaptive cleaning
for RFID data streams,” in Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September 12-15,
2006, U. Dayal, K. Whang, D. B. Lomet, G. Alonso, G. M. Lohman,
M. L. Kersten, S. K. Cha, and Y. Kim, Eds. ACM, 2006, pp. 163–174.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1164143

[14] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby, “A deferred
cleansing method for RFID data analytics,” in Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, U. Dayal, K. Whang, D. B. Lomet,
G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and
Y. Kim, Eds. ACM, 2006, pp. 175–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1164144

[15] K. Patil, V. Bansal, V. Dhateria, and S. Narayankhedkar, “Probable
causes of rfid tag read unreliability in supermarkets and proposed
solutions,” in International Conference on Information Processing, 12
2015, pp. 392–397.

[16] N. Fescioglu-Ünver, S. H. Choi, D. Sheen, and S. R. T. Kumara,
“RFID in production and service systems: Technology, applications

and issues,” Inf. Syst. Frontiers, vol. 17, no. 6, pp. 1369–1380, 2015.
[Online]. Available: https://doi.org/10.1007/s10796-014-9518-1

[17] “INFUSE website,” https://sth4infuse.github.io/.
[18] H. A. Le, T. Dao, and N. Truong, “A formal approach to

checking consistency in software refactoring,” Mob. Networks Appl.,
vol. 22, no. 2, pp. 356–366, 2017. [Online]. Available: https:
//doi.org/10.1007/s11036-017-0807-z

[19] Y. Li, S. Wang, and T. N. Nguyen, “A context-based automated
approach for method name consistency checking and suggestion,” in
43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 574–586.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00060

[20] R. Jongeling, F. Ciccozzi, A. Cicchetti, and J. Carlson, “Lightweight
consistency checking for agile model-based development in practice,” J.
Object Technol., vol. 18, no. 2, pp. 11:1–20, 2019. [Online]. Available:
https://doi.org/10.5381/jot.2019.18.2.a11

[21] C. Mayr-Dorn, R. Kretschmer, A. Egyed, R. Heradio, and D. Fernández-
Amorós, “Inconsistency-tolerating guidance for software engineering
processes,” in 43rd IEEE/ACM International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE (NIER) 2021,
Madrid, Spain, May 25-28, 2021. IEEE, 2021, pp. 6–10. [Online].
Available: https://doi.org/10.1109/ICSE-NIER52604.2021.00010

[22] A. Demuth, M. Riedl-Ehrenleitner, and A. Egyed, “Efficient detection
of inconsistencies in a multi-developer engineering environment,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp.
590–601. [Online]. Available: https://doi.org/10.1145/2970276.2970304

[23] Y. Limón, E. Bárcenas, E. Benítez-Guerrero, and G. Molero,
“On the consistency of context-aware systems,” J. Intell. Fuzzy
Syst., vol. 34, no. 5, pp. 3373–3383, 2018. [Online]. Available:
https://doi.org/10.3233/JIFS-169518

[24] Y. Limón, E. Bárcenas, E. Benítez-Guerrero, and J. Gomez,
“Consistency checking of attention aware systems,” in Proceedings
of the Twelfth Latin American Workshop on Logic/Languages,
Algorithms and New Methods of Reasoning, Puebla, Mexico, November
15, 2019, ser. CEUR Workshop Proceedings, M. J. O. Galindo,
J. R. Marcial-Romero, C. Z. Cortés, and P. P. Parra, Eds.,
vol. 2585. CEUR-WS.org, 2019, pp. 13–23. [Online]. Available:
http://ceur-ws.org/Vol-2585/paper2.pdf

[25] C. Mayr-Dorn, M. Vierhauser, S. Bichler, F. Keplinger, J. Cleland-
Huang, A. Egyed, and T. Mehofer, “Supporting quality assurance
with automated process-centric quality constraints checking,” in 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 1298–1310.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00118

[26] “Pollen wise - what’s in your air, when and where,” [EB/OL], https://
play.google.com/store/apps/details?id=com.PollenSense.PollenWise Ac-
cessed May 13, 2022.

[27] P. Kuo, S. Lin, J. Hu, and C. Huang, “Multi-sensor context-aware
based chatbot model: An application of humanoid companion robot,”
Sensors, vol. 21, no. 15, p. 5132, 2021. [Online]. Available:
https://doi.org/10.3390/s21155132

[28] “Waymo,” https://waymo.com.
[29] “The numbers dont lie: Self-driving cars are getting good.” https://www.

wired.com/2017/02/california-dmv-autonomous-car-disengagement/.
[30] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing quality of

context in pervasive computing,” in Sixth International Conference on
Quality Software (QSIC 2006), 26-28 October 2006, Beijing, China.
IEEE Computer Society, 2006, pp. 193–200. [Online]. Available:
https://doi.org/10.1109/QSIC.2006.38

[31] C. Xu, S. Cheung, W. K. Chan, and C. Ye, “Heuristics-based
strategies for resolving context inconsistencies in pervasive computing
applications,” in 28th IEEE International Conference on Distributed
Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China.
IEEE Computer Society, 2008, pp. 713–721. [Online]. Available:
https://doi.org/10.1109/ICDCS.2008.46

[32] J. Chomicki, J. Lobo, and S. A. Naqvi, “Conflict resolution using
logic programming,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 1,
pp. 244–249, 2003. [Online]. Available: https://doi.org/10.1109/TKDE.
2003.1161596

[33] C. Chen, C. Ye, and H. Jacobsen, “Hybrid context inconsistency
resolution for context-aware services,” in Ninth Annual IEEE
International Conference on Pervasive Computing and Communications,

PerCom 2011, 21-25 March 2011, Seattle, WA, USA, Proceedings.
IEEE, 2011, pp. 10–19. [Online]. Available: https://doi.org/10.1109/
PERCOM.2011.5767574

[34] R. Kretschmer, D. E. Khelladi, A. Demuth, R. E. Lopez-Herrejon,
and A. Egyed, “From abstract to concrete repairs of model
inconsistencies: An automated approach,” in 24th Asia-Pacific Software
Engineering Conference, APSEC 2017, Nanjing, China, December
4-8, 2017, J. Lv, H. J. Zhang, M. Hinchey, and X. Liu, Eds.
IEEE Computer Society, 2017, pp. 456–465. [Online]. Available:
https://doi.org/10.1109/APSEC.2017.52

[35] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “On impact-
oriented automatic resolution of pervasive context inconsistency,” in
Proceedings of the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik,
Croatia, September 3-7, 2007, I. Crnkovic and A. Bertolino, Eds.
ACM, 2007, pp. 569–572. [Online]. Available: https://doi.org/10.1145/
1287624.1287712

[36] C. Xu, X. Ma, C. Cao, and J. Lu, “Minimizing the side
effect of context inconsistency resolution for ubiquitous computing,”
in Mobile and Ubiquitous Systems: Computing, Networking, and
Services - 8th International ICST Conference, MobiQuitous 2011,
Copenhagen, Denmark, December 6-9, 2011, Revised Selected Papers,
ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, A. Puiatti and T. Gu,
Eds., vol. 104. Springer, 2011, pp. 285–297. [Online]. Available:
https://doi.org/10.1007/978-3-642-30973-1_29

[37] D. E. Khelladi, R. Kretschmer, and A. Egyed, “Detecting and exploring
side effects when repairing model inconsistencies,” in Proceedings
of the 12th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2019, Athens, Greece, October 20-22, 2019,
O. Nierstrasz, J. Gray, and B. C. d. S. Oliveira, Eds. ACM, 2019, pp.
113–126. [Online]. Available: https://doi.org/10.1145/3357766.3359546

[38] C. Xu, S. Cheung, C. Lo, K. Leung, and J. Wei, “Cabot: On the ontology
for the middleware support of context-aware pervasive applications,” in
Network and Parallel Computing, IFIP International Conference, NPC
2004, Wuhan, China, October 18-20, 2004, Proceedings, ser. Lecture
Notes in Computer Science, H. Jin, G. R. Gao, Z. Xu, and H. Chen,
Eds., vol. 3222. Springer, 2004, pp. 568–575. [Online]. Available:
https://doi.org/10.1007/978-3-540-30141-7_85

[39] C. Xu, S. C. Cheung, X. Ma, C. Cao, and J. Lu, “Adam:
Identifying defects in context-aware adaptation,” J. Syst. Softw.,
vol. 85, no. 12, pp. 2812–2828, 2012. [Online]. Available: https:
//doi.org/10.1016/j.jss.2012.04.078

[40] A. L. Murphy, G. P. Picco, and G. Roman, “LIME: A coordination
model and middleware supporting mobility of hosts and agents,” ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 3, pp. 279–328, 2006.
[Online]. Available: https://doi.org/10.1145/1151695.1151698

