
Minimizing Link Generation in Constraint Checking
for Context Inconsistency Detection

Chuyang Chen†‡, Huiyan Wang∗†‡, Lingyu Zhang†‡, Chang Xu∗†‡, and Ping Yu†‡
†State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
‡Department of Computer Science and Technology, Nanjing University, Nanjing, China

chuyangchen2018@outlook.com, why@nju.edu.cn, zly@smail.nju.edu.cn, {changxu, yuping}@nju.edu.cn

Abstract—Adaptive applications rely on conditions about their
environments (or contexts) to deliver smart services, e.g., location-
aware services. Due to inherent noises in environmental sensing
and interpretation, there is an increasing demand for guarding
the consistency of contexts to avoid application misbehavior, and
at the same time minimizing the guarding cost. Existing work
has tried to reduce the cost by speeding up the kernel constraint
checking module inside the consistency guarding process. Most
efforts have been spent on reusing previous checking results or
checking constraints in parallel, while leaving untouched one
central problem of link generation, the step that consumes a
substantially large part of the total time cost for explaining why
constraints have been violated. In this paper, we propose a novel
technique, MG, to automatically identify and remove redundant
link generation, without harming any checking result. We show
that MG is sound (always checking correctly) and complete (re-
moving all redundancy). Our experiments with synthesized and
real-world consistency constraints reported that compared with
existing work, MG achieved significant efficiency improvements
on the link generation (tens to hundreds times speedup), and
could reduce the total constraint checking time up to 45.4%.

Index Terms—Context inconsistency, constraint checking, link
redundancy

I. INTRODUCTION

With the advances of modern sensor and actuator technolo-
gies, adaptive applications (e.g., location-aware navigators,
self-driving vehicles [1], [2], cloud computing systems [3],
and mobile apps [4]) are gaining increasing popularity. These
applications deliver intelligent services by interpreting their
environments as contexts [5] and based on them conducting
adaptive behaviors. However, due to inevitable environmental
noises, application contexts can easily deviate from their
ground truths (e.g., inaccurate location sensing) [6]–[10], and
thus lead to application misbehaviors or even crashes.

Due to the lack of direct ground truths, various approaches
have studied ways of detecting flaws in application con-
texts and explaining why they have occurred. One promising
approach is to check an application’s contexts against pre-
specified rules, namely, consistency constraints [6]–[8], that
should hold under the application’s knowledge domain and
physical laws (e.g., a continual change of location data should
not exceed the speed limit). Then, any detection of constraint
violation is considered as a context inconsistency [6]–[8], and
reported to the application for resolution [11]–[17]. As the
constraint checking process aims to guard an application’s
∗

Corresponding authors.

reliability, it is expected to be effective and efficient [7],
[8], [18]–[21], without compromising the application’s normal
functionalities. To this end, various techniques have stud-
ied speeding up constraint checking, e.g., entire constraint
checking (ECC) [6] as the correctness baseline, partial con-
straint checking (PCC) [8] to check constraints incremen-
tally by reusing previous results, and concurrent constraint
checking (Con-C) [18] and GPU-assisted concurrent checking
(GAIN) [19] by checking constraints in parallel via multiple
CPU or GPU threads.

With such efforts, further performance improvement has
become extremely difficult for constraint checking. Consid-
ering the growing environmental complexity and dynamics
(e.g., ubiquitous cyber-physical interactions and huge-volume
data) [22], the increasing workload has breached the capabili-
ties of existing constraint checking techniques (e.g., over 90%
missed inconsistency detection [20]).

In this paper, we tackle this problem from a new perspective.
We characterize existing efforts (e.g., incremental or concur-
rent constraint checking) into the “making-it-faster” category,
i.e., speeding up all calculations in constraint checking. We
conjecture a new “making-it-less” category of efforts, i.e.,
identifying and removing redundant calculations in constraint
checking, without affecting any result. If the conjecture can
be realized, not only it itself can reduce the overhead of con-
straint checking, but also it can assist all existing techniques,
contributing generally to their further improvements.

We dig into constraint checking, and observe a two-step pat-
tern that covers all calculations in existing constraint checking
techniques, namely, truth value evaluation and link generation.
The former examines whether a given consistency constraint
is violated with respect to the contexts under checking, and
returns a truth value of True or False. The latter generates a
data structure named link [6]–[8] to explain which elements
in the contexts have concretely contributed to the constraint
violation (when False) or satisfaction (when True), helping
developers to locate malfunctioned places, and it can consume
a substantially large part (could be up to 45% as reported
by our experiments) in the total checking cost. Besides, we
observe that many links generated as intermediate results
during constraint checking are essentially redundant (23–
100%, as reported), in the sense that being without them
never affects generating final link results (details analyzed
later). Then, how such redundant links have been generated

and whether one can avoid them become both an interesting
question and the key towards our “making-it-less” conjecture.
In this paper, we study this problem and aim to eliminate such
link redundancy completely.

We propose a Minimized Link Generation technique (or
MG) to automatically identify and remove redundant link
generation during constraint checking. As compared to ex-
isting practice of link generation, named Complete Link
Generation (or CG), working as the baseline and used in
existing constraint checking techniques [6], [8], [18], MG can
significantly reduce link generation by 23–100%. MG achieves
this via a hybrid static-dynamic analysis, first constructing
a data structure named S-CCT encoding a constraint’s static
syntax information, and then evolving it with dynamic truth
value information associated with the contexts checked on this
constraint. We prove that the S-CCT has marked all substantial
places that are necessary for generating the final links to
explain the constraint’s violation or satisfaction, and that other
places can be safely isolated from consideration, without any
chance to affect the calculation of the final links (soundness).
We also show that MG is complete in having identified and
removed all redundant link generation, and generic in being
applicable to all existing constraint checking techniques.

Our experimental evaluation reported that: (1) MG realized
100% link utilization (i.e., removing 100% redundant link
generation), as compared to existing work, which could lead
to severe link redundancy problem (e.g., 75–83% average
link redundancy); (2) When applied to existing constraint
checking techniques (e.g., ECC [6], PCC [8], and Con-C [18]),
MG brought significant efficiency improvements on the link
generation (tens or hundreds of improvements), and reduced
the total constraint checking up to 45.4%. The evaluation con-
firmed MG’s generic benefits, by boosting existing constraint
checking techniques towards further improvements.

The remainder of this paper is organized as follows. Sec-
tion II uses an illustrative example to introduce the back-
ground. Section III first reports a pilot study to motivate our
work, and then elaborates on our MG technique to identify
and eliminate redundant link generation in constraint checking.
Section IV evaluates our MG under controlled experiments
with exhaustive constraint analysis and a case study with real-
world scenarios. Section V discusses the related work in recent
years, and finally Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we introduce preliminary concepts with an
illustrative example.

A. Preliminary

Context and context pool. A context is a piece of structured
information about an application’s running environment [20].
It can be modeled as a finite set of elements, each denoting
a relevant part of this context. Consider a highway charg-
ing system example, which tracks each travelling vehicle’s
information like license plate number, driving speed, and
current location, and calculates related highway tolls. One

Gantry
“out”

Gantry
“rampA”

Gantry
“rampB”

Wrongly sensing
car1 by rampB

car1’s true trajectory
car2’s true trajectory

car1

car2

Fig. 1: Illustration of a highway scenario

can model the vehicles that have recently driven through a
specific highway gantry a as: Ca = {car1, car2, · · · }. Each
cari identifies a vehicle with specific information, e.g., car
id, gantry number, driving speed, and timestamp. When the
time flows, contexts are updated to meet the application’s
requirements. A context pool collects all contexts interesting
to an application, e.g., the preceding contexts associated with
all highway gantries: Ca, Cb, . . . , Cm.

Consistency constraint. For the preceding application,
highway gantries deploy cameras and sensors to track vehicles,
and the tracking can be subject to recognition or sensing
error. As a result, thus maintained contexts can be inaccurate,
incomplete, or even conflict with each other, which are known
as consistency constraints [6]–[8]. To address this, consistency
constraints can be formulated to check problems with the
maintained contexts. We give an example constraint Rexit
below:

∀v1 ∈ Cout
(
(∃v2 ∈ CrampA (sameCar (v1, v2)))

implies (not (∃v3 ∈ CrampB (sameCar (v1, v3))))
) (Rexit)

This constraint requests that any exiting vehicle at Gantry
out should be from either Gantry rampA or rampB, but not
both. In particular, if the exiting vehicle has been detected at
Gantry rampA, it should not appear at Gantry rampB (Fig. 1
illustrates a possible sensing error). Otherwise, its highway
toll may be calculated wrongly.

Such consistency constraints are specified using the follow-
ing first-order logical formulae (used in existing work [6]–[8],
[18], [20], [23]–[25]), where C is a context, vi is a variable
that takes an element from C as its value; terminal bfunc is
an application-specific predicate that returns a Boolean value
(True/T or False/F):

f ::=∀v ∈ C(f) | ∃v ∈ C(f) | (f) and (f) |
(f) or (f) | (f) implies (f) | not (f)|
bfunc (v1, v2, · · · , vn) | T | F.

A consistency constraint can also be represented by a syntax
tree structure, e.g., Rexit illustrated in Fig. 2.

Constraint checking. Constraint checking examines the
contexts in an application’s context pool against given con-
sistency constraints to report truth values (indicating whether
constraints are violated or satisfied) and links (indicating
how constraints are violated or satisfied). This corresponds

∀𝑣𝑣1 ∈ Cout

implies

∃𝑣𝑣2∈ CrampA not

sameCar(𝑣𝑣1,𝑣𝑣2)

sameCar(𝑣𝑣1,𝑣𝑣3)

∃𝑣𝑣3∈ CrampB

Fig. 2: Syntax tree structure of constraint Rexit

to two kernel steps, namely, truth value evaluation and link
generation. We introduce them below.

B. Constraint Checking

Consider the preceding consistency constraint Rexit. Let
Cout = {car1, car2}, CrampA = {car1}, and CrampB =
{car1, car2}. Then the constraint is violated, resulting in a
truth value of False (F), along with a link of ⟨violated, {v1 =
car1, v2 = car1, v3 = car1}⟩, explaining that element car1
in contexts Cout, CrampA, and CrampB together decide the
constraint’s violation (while other elements are irrelevant).

To discuss how to obtain the above truth value and link, we
let fA = ∃v2 ∈ CrampA (sameCar (v1, v2)) and fB = ∃v3 ∈
CrampB (sameCar (v1, v3)), for ease of presentation. Then, the
proceeding constraint can be simplified as: Rexit = ∀v1 ∈
Cout

(
(fA) implies (not (fB))

)
.

1) Truth Value Evaluation: To conduct the truth value
evaluation, constraint Rexit would be evaluated to a Boolean
value according to its contained contexts. Fig. 3 lists part
of semantics of the truth value evaluation existing constraint
checking techniques follow (for example only, but already
sufficient for evaluating Rexit). T [f]α denotes the evaluation
of formula f under variable assignment α. The semantics are
defined recursively and can be used accordingly.

To evaluate Rexit, one needs to enumerate all possible vari-
able assignments for the top universal formula’s subformula
(the implies one):

T
[
∀v1 ∈ Cout

(
(fA) implies (not (fB))

)]
∅

=T ∧ T [(fA) implies (not (fB))]⟨v1:=car1⟩

∧ T [(fA) implies (not (fB))]⟨v1:=car2⟩ .

We explain the calculation of the first variable assignment
(i.e., v1 := car1) for example:

T [(fA) implies (not (fB))]⟨v1:=car1⟩

=¬T [(fA)]⟨v1:=car1⟩ ∨ T [(not (fB))]⟨v1:=car1⟩

=¬T [(fA)]⟨v1:=car1⟩ ∨ ¬T [(fB)]⟨v1:=car1⟩ .

We then follow other semantics to evaluate fA and fB :

T [(fA)]⟨v1:=car1⟩

=T [∃v2 ∈ CrampA (sameCar (v1, v2))]⟨v1:=car1⟩

=F ∨ T [sameCar (v1, v2)]⟨v1:=car1,v2:=car1⟩ = T,

T [∀v ∈ C(f)]α = T ∧

 ∧
e∈C

T [f]α[v:=e]

T [∃v ∈ C(f)]α = F ∨

 ∨
e∈C

T [f]α[v:=e]

T [(f1) implies (f2)]α = ¬T [f1]α ∨ T [f2]α

T [not (f)]α = ¬T [f]α

T [bfunc(v1, . . . , vn)]α = bfunc(v1, . . . , vn)α

Fig. 3: Part of semantics for the truth value evaluation

T [(fB)]⟨v1:=car1⟩

=T [∃v3 ∈ CrampB (sameCar (v1, v3))]⟨v1:=car1⟩

=F ∨ T [sameCar (v1, v3)]⟨v1:=car1,v3:=car1⟩

∨ T [sameCar (v1, v3)]⟨v1:=car1,v3:=car2⟩

=F ∨ T ∨ F = T.

With them, we obtain T [(fA) implies (not (fB))]⟨v1:=car1⟩ =
F. Similarly, we obtain T [(fA) implies (not (fB))]⟨v1:=car2⟩ =
T. Then we obtain the whole constraint’s truth value:

T
[
∀v1 ∈ Cout

(
(fA) implies (not (fB))

)]
= T ∧ F ∧ T = F.

We note that the above calculation has been explained in
a top-down manner for human understanding. The truth value
evaluation is actually conducted in a bottom-up manner, i.e.,
a post-order traversal: when all necessary nodes are evaluated,
their parent nodes can then be evaluated. One can also annotate
the constraint’s syntax tree structure with variable assignments
to expand it for better illustration, as in Fig. 4, which is named
consistency computation tree (or CCT) as proposed in existing
work [7], [8], [18]–[20], [23], [25]). We also list the truth
values evaluated for all nodes for reference in Fig. 4.

2) Link Generation: With truth values obtained, the link
generation can next be conducted to explain why the associated
violations (when F) or satisfaction (when T) have occurred via
links. For the preceding example, its generation results contain
one link: ⟨violated, {v1 = car1, v2 = car1, v3 = car1}⟩,
which can be calculated by following the semantics in Fig. 5
(part but sufficient for the example). In the link, the first part
indicates the constraint violation, and the second part includes
the certain variable assignment that leads to this violation.
In the semantics in Fig. 5, L[f]α denotes generating links
for formula f under variable assignment α. There are some
auxiliary functions or operations, e.g., FlipSet is used to flip
the first part for all links in a given set (i.e., from violated to
satisfied, and vice versa), and ⊗ is used to merge two link sets
by the Cartesian product (·) upon each pair formed between
a link from the first set and another from the second set. For
example, two link sets S1 and S2 are merged as follows:

S1 ⊗ S2 = {l1 · l2|l1 ∈ S1, l2 ∈ S2} .

where l1 · l2 = ⟨Type(l1), Bindings(l1) ∪Bindings(l2)⟩,
with Type(l) referring l’s link type (same for l1 and l2 when

Fig. 4: CCT for the example constraint (left: truth value; right: link; shadowed sub-tree: S-CCT part)

L [∀v ∈ C(f)]α = {⟨vio, {v := e}⟩ ⊗ L[f]α[v:=e]|

e ∈ C ∧ T [f]α[v:=e] = F}

L [∃v ∈ C(f)]α = {⟨sat, {v := e}⟩ ⊗ L[f]α[v:=e]|

e ∈ C ∧ T [f]α[v:=e] = T}

L [(f1) implies (f2)]α =

(1) FlipSet
(
L [f1]α

)
⊗ L [f2]α ,

if T [f1]α = T and T [f2]α = F

(2) FlipSet
(
L [f1]α

)
∪ L [f2]α ,

if T [f1]α = F and T [f2]α = T

(3) L [f2]α , if T [f1]α = T [f2]α = T

(4) FlipSet
(
L [f1]α

)
, if T [f1]α = T [f2]α = F

L [not (f)]α = FlipSet (L[f]α)

L [bfunc(v1, . . . , vn)]α =

(1) {⟨sat,∅⟩}, if T [bfunc(v1, . . . , vn)]α = T

(2) {⟨vio,∅⟩}, if T [bfunc(v1, . . . , vn)]α = F

Fig. 5: Part of semantics for the link generation (“vio” stands
for “violated” and “sat” stands for “satisfied”)

used), and Bindings(l) referring to l’s contained variable-
value bindings in its variable assignment.

Similarly, the link generation is also conducted in a bottom-
up manner, i.e., when all necessary nodes obtain links, their
parent nodes obtain too. One can follow the semantics in
Fig. 5 to calculate all links (intermediate and final ones) for
the constraint. For illustration, we annotate all such links on
the CCT associated with this constraint in Fig. 4.

We observe that for calculating the final link at node 1
in Fig. 4, all nodes on the tree have participated into the
calculation and generated their own links. As observed from
the semantics in Fig. 3 and Fig. 5, the link generation is
much more complicated than the truth value evaluation. On the
other hand, some generated links are indeed not necessary. For
example, we observe that the final link at node 0 essentially
relates to links at nodes 1–7 only, i.e., those at nodes 8–15 are
redundant. The redundancy rate (53.3%) is rather high!

III. METHODOLOGY

In this section, we first report a pilot study to motivate
our work, and then elaborate on our MG methodology of

eliminating redundant link generation, to realize more efficient
constraint checking in detecting context inconsistencies.

A. Motivation and Pilot Study

We conducted a pilot study to investigate how severe the
link redundancy problem is in constraint checking. The study
was conducted in an exhaustive way, in the sense that it
enumerated all possible consistency constraints composed of
various formula types. To control the study cost, we restricted
the constraint height (as in the syntax tree or CCT) to no more
than four. This left us a total of 1,658 constraints. To conduct
the truth value evaluation and link generation, we allowed
bfunc terminals to return random values. This simulated all
conditions about how contexts participated into bfunc calcula-
tions. Then we measured and found that all existing constraint
checking techniques (all based on Complete Link Generation
or CG, as aforementioned) suffered from the link redundancy
problem: 88% constraints with over 50% redundant links, and
73% constraints with over 75% redundancy. This strongly calls
for research efforts to reduce or eliminate such unnecessary
overhead in the constraint checking.

There is only one piece of work addressing this problem.
We named it Optimized Link Generation) (or OG) [23],
following its own name of optimized constraint checking
(OCC). However, its goal of being optimized is far from the
reality, as OG relies only on static formula type information
in the constraints to analyze and prune potential redundant
link generation. To play safe, the analysis is conservative.
For example, its paper [23] reported that the use rate of
its generated links is only 83.3% for “and”/“or”/“implies”
formulas (or 16.7% redundancy rate). Besides, it only made
a formula-type based prediction for the link use rate, and one
does not know its practical effectiveness. When tested with our
preceding example constraint in Fig. 4, OG has a redundancy
rate as high as still 53.3% (i.e., not effective for this particular
example). When tested with the 1,658 constraints in our
pilot study, OG still caused a severe, although alleviated,
redundancy link problem: 80% constraints (88% for CG) with
over 50% redundant links, and 57% constraints (73% for CG)
with over 75% redundancy. Therefore, this further calls for
more effective link redundancy techniques.

In this paper, we would next propose a novel technique,
named Minimized Link Generation (or MG, as aforemen-

Minimized Link Generation Derivation of Substantial Conditions (§III.C)
Consistency
constraints

Contexts
(changing)

Detected
context

inconsistenciesTruth Value Evaluation Tainting CCT for S-CCT (§III.D) S-CCT-guided Link Gen (§III.E)

Complete Link Generation (CG)
original constraint checking

MG-deployed constraint checking

Fig. 6: MG overview

tioned), to minimize the link redundancy in the constraint
checking. MG exploits a key data structure, named substantial
CCT (or S-CCT for short), which isolates a CCT into two
parts, one concerning substantial nodes that contribute to the
calculation of final links, while the other concerning immate-
rial ones that are irrelevant to final links. For the constraint in
our illustrative example in Fig. 4, S-CCT marks only nodes
1–7 in the CCT, and thus MG generates links associated
with these nodes only. The S-CCT can also automatically
adjust itself based on runtime information about contexts under
checking, adaptive to various constraints and their evaluations.
In theory, MG can identify and eliminate the generation of all
redundant links, as we discuss later.

B. Technique Overview

We now give an overview on how the MG technique works
in Fig. 6. It consists of three steps. First, MG derives substan-
tial conditions with respect to different formula types used in
given consistency constraints. There conditions characterize
how a formula type contributes to this formula’s violation or
satisfaction. Second, with derived substantial conditions, MG
taints the CCTs associated with the constraints in a top-down
manner to obtain sub trees, named S-CCTs, which contain
only those nodes that generate intermediate links necessary for
the calculation of final links. Finally, MG conducts the link
generation for the nodes on the S-CCTs only, without affecting
the final results. MG promises to generate more effective links
than CG (as illustrated by the dashed arrows and process).

In a CCT as in Fig. 4, nodes are at different layers. We use
notation e1 ≻ e2 to denote that node e2 is node e1’s direct
child, and use notation ≻l and ≻r to distinguish the left and
right children when necessary. As our later analysis relies only
on the formula type f and truth value tv associated with each
node, we can simplify a node as e = (f, tv) when no ambi-
guity. For example, nodes 1 and 2 in Fig. 4 can be simplified
as: node1 = (∀,False), and node2 = (implies,False), with
relations node1 ≻ node2 or node1 ≻l node2.

Our key is to identify the nodes on a CCT that will
contribute to the calculation of final links on the root node,
i.e., identifying those nodes on the corresponding S-CCT. We
realize this by first deriving substantial conditions for the
formula type associated with each node, as explained below.

C. Derivation of Substantial Conditions

According to its associated formula type (i.e., “∀”, “∃”,
“and”, “or”, “implies”, or “not”), a node can contribute

∀
False

∀
True

∗

True

∗

True

∗

True
∗

True

∗

False

∗

False

Fig. 7: Two typical cases of substantial nodes for the ∀ formula

implies
False

∗

True

∗

False

implies
True

∗

−

∗

True

implies
True

∗

False

∗

−

Fig. 8: Three typical cases of substantial nodes for the implies
formula

differently to its parent node’s violation or satisfaction in a
CCT.

Take the universal (∀) formula as an example, as illustrated
in Fig. 7, which gives two typical cases. If the root node has
a truth value of False (i.e., formula violated), and only its
child node(s) being False contribute(s) to its violation. In this
case, we consider the child node(s) being False as substan-
tial node(s), and model its(their) condition(s) as substantial
condition(s) in a form of pair ⌜selection, requirement⌝, with
selection to select the target child nodes and requirement to
set up a condition to qualify such nodes. For this case, the
root node’s substantial condition is ⌜≻,False⌝, meaning: (1)
selecting all its child nodes, and (2) qualify them by truth
value False. We derive this substantial condition by (∀, False)
SC−−→ ⌜≻,False⌝, as listed in Fig. 9. Then for the second

case in Fig. 7, the root node has a truth value of True (i.e.,
formula satisfied), and all its child nodes (being True) together
contribute to its satisfaction, but no single one fully decides it.
Thus, we remove these child nodes from the consideration of
being substantial, with the corresponding substantial condition
as (∀, False) SC−−→ ∅, suggesting no further analysis.

The substantial conditions for the existential (∃) formula
can be derived similarly: (∃, True)

SC−−→ ⌜≻,True⌝, and
(∃, False) SC−−→ ∅, corresponding to its two similar cases.

We illustrate the implies formula in Fig. 8. If the root
node has a truth value of False (i.e., formula violated), its
left child node being True and right child node being False
together contribute to this violation. Thus, both child nodes

(∀, True)
SC−−→ ∅, (∀, False)

SC−−→ ⌜≻,False⌝;
(∃, True)

SC−−→ ⌜≻,True⌝, (∃, False)
SC−−→ ∅;

(and, True)
SC−−→ ⌜≻, ∗⌝, (and, False)

SC−−→ ⌜≻,False⌝;
(or, True)

SC−−→ ⌜≻,True⌝, (or, False)
SC−−→ ⌜≻, ∗⌝;

(implies, True)
SC−−→ ⌜≻l,False⌝, ⌜≻r,True⌝,

(implies, False)
SC−−→ ⌜≻, ∗⌝;

(not, ∗) SC−−→ ⌜≻, ∗⌝.

Fig. 9: Substantial condition derivation

are substantial. Otherwise, the root node is True, and either
its left child node is False or right child node is True, any one
of which would decide the root node’s truth value. Thus, the
corresponding child node(s) satisfying such conditions is(are)
substantial. Altogether, we derive the substantial conditions as:
(implies, False) SC−−→ ⌜≻, ∗⌝ (“∗” is the wildcard character),
and (implies, True) SC−−→ ⌜≻l,False⌝, ⌜≻r,True⌝.

The substantial conditions for the “and”, and “or” formulas
can be similarly derived and are thus omitted for discussion.
Finally, for the not formula, since its node contains one child
node only, which must be substantial, we derive its substantial
condition as: (not, ∗) SC−−→ ⌜≻, ∗⌝.

We list all derived substantial conditions in Fig. 9.

D. Tainting CCT for S-CCT

With the derived substantial conditions for all pairs of
formula type and truth value in Fig. 9, we now proceed to in-
troduce how to taint a CCT to obtain its corresponding S-CCT,
in order to guide later link generation without redundancy. We
name this process conditional tainting, which works after the
truth value evaluation (i.e., truth values available), but before
the link generation in constraint checking.

The conditional tainting aims to taint all the nodes in a
CCT that satisfy substantial conditions. Specially, for any node
a in the CCT (starting from the root node, in a top-down
manner), we examine all its child nodes to see whether any of
them satisfies a’s substantial condition. If yes, this child node
is tainted. Otherwise, all child nodes are not tainted and we
stop further examining these nodes. Therefore, all eventually
tainted nodes must be connected, which are known as the S-
CCT (a sub-tree of the original CCT).

This tainting process works by a DFS algorithm, as in
Algorithm 1. It (GETSCCT) starts with the root node of the
given CCT, by feeding the node to the tainting logic (TAINT)
when the whole constraint is violated (i.e., the root node’s
truth value being False). Then, for any fed node, the TAINT
procedure checks this node’s all child nodes to see whether
any of them satisfies the fed node’s associated substantial
condition. If yes, the concerned child node is tainted and
added into the target S-CCT (ccts). For the CCT in Fig. 4,
the tainting process starts from node 1 (∀,False), whose
substantial condition is ⌜≻,False⌝. Therefore, only those child
nodes with a truth value of False are tainted, i.e., node 2
(implies,False). Then, the process further examines the child
nodes of the newly tainted node 2, whose substantial condition

Algorithm 1 Conditional Tainting

1: procedure GETSCCT(cct)
2: if ISROOTVIOLATED(cct.root) then
3: return TAINT(cct.root)
4: end if
5: end procedure
6: procedure TAINT(currentNode)
7: ccts ← {currentNode}
8: for c ∈ currentNode.children do
9: if SATISFY(currentNode, c) then

10: subResult← TAINT(c)

11: ccts ← ccts ∪ subResult

12: end if
13: end for
14: return ccts
15: end procedure

is ⌜≻, ∗⌝, and taints nodes 3 and 5 accordingly. Similarly,
nodes 4, 6, and 7 are also tainted, and then this tainting
process terminates. The finally obtained S-CCT contains a total
of seven nodes (i.e., nodes 1–7), as earlier illustrated by the
shadowed sub-tree in Fig. 4.

E. S-CCT-guided Link Generation

Following the nodes tainted in the S-CCT, the link gener-
ation can now be conducted with the guidance of avoiding
generating redundant links. This process is straightforward.
For any node in a CCT, if the node is tainted (i.e., in the
S-CCT), links are still generated using the original semantics
in Fig. 5. Otherwise, the node is not tainted, and no link is
generated for this node. This process would guide to generate
links only for nodes in the S-CCT (e.g., node 1–7 as in
Fig. 4). Note that the S-CCT would be updated when its
corresponding CCT evolves, and this update is efficient as
shown in Algorithm 1.

To understand how our MG differs from existing work on
the link generation (e.g., CG and OG), we illustrate their
capabilities in Fig. 10.. In the figure, all-links refer to the links
generated by CG as in Fig. 5, which can be divided into two
parts, namely, must-links and may-links. Must-links refer to
the links that have to be generated so as to calculate the final
links at the root node of a CCT, while may-links refer to the
remaining links, the avoidance of whose generation will not
affect final links (i.e., redundant links, as aforementioned). In
the comparison, CG generates all-links, including all must-
links and may-links; OG reduces part of may-links by its
static redundancy analysis, but still leaves some redundancy,
i.e., including all must-links and some may-links. Our MG

All-links
May-links

Must-links
MG

CG
OG

Fig. 10: Relations among different types of links (all-links =
must-links + may-links)

instead eliminates all may-links, thus including only all must-
links. This is guaranteed by the following two theorems,
namely, soundness (for correctness) and completeness (for
minimization) theorems.

Theorem 1 (Soundness). MG generates all must-links.

Theorem 2 (Completeness). MG generates no may-links.

Sketch of proof: We prove Theorems 1 and 2 together. For
saving space, we give the sketch of proof by induction. The
intuition is to show that for any node that generates links
necessary for calculating the final links, MG would taint it,
and also taint those of its child nodes as long as they generate
links necessary for calculating this node’s links.

Base step. Consider the root node. According to Algo-
rithm 1, MG taints it only when the constraint is violated.
In this case, all the root node’s generated links are considered
as the final links. Therefore, they are naturally must-links.

Inductive step. Consider a given node m, whose generated
links are must-links. We now examine its child nodes. We
discuss only the ∀ and implies nodes, and other nodes are
similar.

1) When m is a ∀ node, according to the substantial
conditions in Fig. 9, if this node’s truth value is False,
MG would taint only those of its child nodes being
False, i.e., (∀, False) SC−−→ ⌜≻,False⌝. This essentially
corresponds to the link generation semantics for the ∀
formula in Fig. 5, i.e., L [∀v ∈ C(f)]α = {⟨vio, {v :=
e}⟩ ⊗ L[f]α[v:=e]| e ∈ C ∧ T [f]α[v:=e] = F}.
Therefore, MG taints right those child nodes that would
contribute necessary links (i.e., must-links).

2) When m is an implies node, we look into its link
generation semantics in Fig. 5. There are four cases.
We observe that if m’s truth value is False, its left child
must be True and right child be False (case (1)). Then
all its child nodes’ links (i.e., L [f1]α and L [f2]α) are
necessary. For this case, MG right taints both its child
nodes, as the substantial conditions in Fig. 9. For the
remaining three cases, m’s truth value is True, and m’s
links depend on its left child node only if the node is
False (cases (2) and (4)), and on its right child node only
if the node is True (cases (2) and (3)) in Fig. 5. This
again exactly corresponds to MG’s substantial conditions
in Fig. 9. Therefore, MG also taints m’s child nodes
generating must-links.

With other types of nodes similarly proved, we combine
both the base and inductive steps, and have that MG generates
must-links only (i.e., no may-link). This completes the proof.

□

F. Application to Constraint Checking

MG minimizes the links that have to be generated in the
constraint checking, and is generic in that it can be easily
applied to existing constraint checking techniques, e.g., ECC
(entire checking) [8], PCC (partial checking) [8], and Con-C
(concurrent checking) [18]. We use a combination to refer to

such applications, e.g., ECC-CG (ECC with CG applied, i.e.,
original ECC) and ConC-MG (Con-C with MG applied, i.e.,
MG replacing the original CG).

Applications to ECC and Con-C. These applications are
straightforward. ECC and Con-C use our aforementioned CG
semantics in Fig. 5. Therefore, MG can be directly applied
by using the substantial condition derivation (in Fig. 9) and
conditional tainting (in Algorithm 1) to decide the S-CCT and
then using the S-CCT to generate links, to replace the original
CG.

Application to PCC. This application needs a little discus-
sion. PCC differs from ECC and Con-C, in that the former
sometimes reuses its previously calculated links, while the
latter always regenerate them (easy for the replacement from
CG to MG). In each scheduled constraint checking, PCC does
not destroy its maintained CCTs, but updates part of them.
Therefore, when applying MG to PCC, one needs to consider
two cases: (1) when generating links for the CCT part that is
updated by PCC in this round, MG generates links only for
tainted nodes; (2) when reusing previous links on the CCT part
that is not updated by PCC in this round, MG checks whether
these links are ready (possibly not ready if the concerned nodes
are not tainted in the last round): if ready, then reuse these
links; otherwise, generate links for tainted nodes. In other
words, MG still generates must-links, but additionally takes
care of the reuse and late generation issue for PCC.

IV. EVALUATION

In this section, we evaluate and compare our MG to existing
work on the effectiveness of link generation, as well as the
benefits to constraint checking.

A. Research Questions

We aim to answer the following three research questions:
RQ1 (Motivation) How does existing link generation (CG

and OG) in constraint checking suffer from the link
redundancy problem?

RQ2 (Effectiveness) How effective is MG in reducing redun-
dant link generation, as compared to CG and OG?

RQ3 (Benefits) How does MG’s link generation contribute to
the efficiency improvement of existing constraint check-
ing (with ECC, PCC, and Con-C)?

We answer RQ1–RQ2 by a comparative study with ex-
haustively synthesized constraints and controlled factors, and
answer RQ3 by a case study with real-world data. We explain
the evaluation design and setup below.

B. Evaluation Design and Setup

1) RQ1 and RQ2: We study the characteristics of existing
link generation in constraint checking on the link redundancy.
First, we select the consistency constraints for study. We
choose to exhaustively enumerate all possible constraints by a
guided synthesis. The synthesis explores all possible formula
types and combinations from the constraint language by a
controlled limit, i.e., by the height of a constraints abstract tree.
The synthesis guarantees that each formula type has been tried

at each possible place in a constraint, and this gave use a total
of 1,658 well-formed constraints, when limiting the height to
no more than four1. On one hand, it is already a sufficient
number of various constraints for analysis, covering all kinds
of formula types and combinations. On the other hand, if one
extends the height limit to 5, that would drastically add over
108 constraints, which overwhelms any possible analysis.

Second, we decide how to calculate bfunc values in the
constraints. As all constraints are synthesized, bfunc terminals
do not carry real semantics. Still, one can simulate their value
calculations by: (1) enumerating the elements in contexts used
in the constraints, say, from 2 to 20 (controlled in feeding
context changes to the constraints), and (2) randomly returning
truth values for bfunc calculations by a controlled probability
p, say, from 0.01 to 0.99 (keeping consistent for the same
context values as parameters).

In the study, we compare three link generation techniques,
namely, CG, OG, and MG, control the number limit l of
elements in contexts, from 2, 5, 10, 15, to 20, and control
the probability p for bfunc to return True at 0.01, 0.05, 0.1,
0.3, 0.5, 0.7, 0.9, 0.95, to 0.99. These factors are designed as
independent variables.

For each configuration decided by these independent vari-
ables, we repeat experiments 5,000 times to alleviate possible
bias caused by randomness. With averaged calculations over
the 5,000 runs for each configuration, we calculate the metric
of link utilization rate (or ULR) to measure the proportion of
the links actually used by calculating final links against all
generated links by a specific technique.

To answer RQ1, we compare CG and OG to show how
severe they suffer from the link redundancy problem and study
their characteristics. To answer RQ2, we compare our MG
to CG and OG to show its effectiveness in identifying and
eliminating redundant link generation.

2) RQ3: We study how MG contributes to the efficiency
improvement for constraint checking. We followed existing
work [8], [18]–[20] to use a real-world application SmartCity
with its large-volume taxi-driving data for the case study. The
application was accompanied with 22 consistency constraints,
covering all seven formula types, and a total of 1.55 million
taxi data, covering 760 vehicles within a continuous period
of 24 hours. The taxi data were transformed into the form of
6.75 million context changes fed to constraint checking for
detecting context inconsistencies.

We conduct constraint checking by combining three link
generation techniques (CG, OG, and our MG) with existing
constraint checking techniques (ECC, PCC, and Con-C). The
latter has different levels of efficiency, and we thus study how
MG can additionally boost their efficiency on the base of CG
and OG. We measure the efficiency improvement by time cost,
and storage improvement by memory cost.

All experiments were conducted on a commodity PC with
one Intel Core i7-10750H CPU @ 2.60GHz and 15GiB RAM.
The PC was installed with Ubuntu 21.10 and Java SE 17.0.1.

1These resources are released at https://github.com/cychen2021/issre22.

0 250 500 750 1,000 1,250 1,5000%

25%

50%

75%

100%

1,203

1,465

1,653

83%

17%

(a) CG

0 250 500 750 1,000 1,250 1,5000%

25%

50%

75%

100%

952

1,320

1,651

75%

25%

(b) OG

Fig. 11: Averaged ULRs for CG and OG

C. Result Analyses

1) RQ1 (Motivation): Fig. 11 illustrates the averaged ULR
measures for CG and OG across all 1,658 consistency con-
straints. We order these constraints according to their as-
cending ULR tends for CG and OG, respectively, for better
illustration. We also mark the 25%, 50%, 75% quantiles by
dashed lines for reference.

From Fig. 11, we observe that both CG and OG suffered
seriously from the link redundancy problem, resulting in very
low averaged ULR measures, e.g., [<1%, 77%] for CG and
[<1%, 91%] for OG. In particular, 1,203 (72.6%) and 952
(57.4%) constraints have averaged ULR measures less than
25% (i.e., link redundancy over 75%), and only 5 (0.3%)
and 7 (0.4%) constraints have averaged ULR measures over
75% (i.e., link redundancy less than 25%), for CG and OG,
respectively. When accumulating the area above and below
each curve, CG caused a total of 83% redundant links and OG
still caused 75% redundant links for all constraints. Therefore,
when taking into account all types of constraints, CG seriously
suffers from the link redundancy problem, and OG improves
a little but the benefits are very limited. This strongly calls
for the new efforts to identify and eliminate such redundancy
and such efforts must be flexible to cope with all types of
constraints.

We also illustrate the ULR ranges for CG and OG across
these 1,658 constraints in Fig. 12, which were caused under
different settings (e.g., different contexts and bfunc results).
From the figure, we observe that both CG and OG are very
unstable in generating links in terms of link redundancy. For
example, around half of all constraints have a ULR range
over 50% for both CG and OG. This suggests that even for a
single constraint, a good link generation technique has to be
flexible to cope with its dynamic information (e.g., contexts
and bfunc results), so as to realize an overall high ULR. This
also echoes our MG’s idea that combines both static (constraint
type and syntax) and dynamic (runtime truth values) analysis
in identifying and removing redundant link generation.

Therefore, we conclude that both CG and OG suffer from
severe link redundancy problem and new research efforts must
take care of static and dynamic analysis in the constraint
checking to achieve the identification and elimination of re-
dundant link generation.

2) RQ2 (Effectiveness): Fig. 13 compares the averaged
ULR measures for CG, OG, and MG across all 1,658 con-
straints. This gives an intuitive and exhaustive picture of

0 500 1,000 1,500
0%

50%

100%

(a) CG

0 500 1,000 1,500
0%

50%

100%

(b) OG

Fig. 12: ULR ranges for CG and OG

how a specific link generation technique works for all types
of constraints. We make the comparisons aligned for each
constraint to better illustrate the differences among the three
techniques (Green: CG, Orange: OG, and Blue: MG).

Regarding the averaged ULR measures, we observe that
CG ranges from <1% to 77% and OG ranges from <1%
to 91%. Although the overall improvement is clear, the ULR
gaps between CG and OG are very inconsistent with respect
to different types of constraints. This suggests that different
constraints imposed different challenges for reducing redun-
dant link generations, and a sole static analysis technique like
OG cannot cope with all situations. On the other hand, for our
MG technique, it achieved a landslide victory by reaching an
always 100% ULR measure, as it promised. This suggests that
MG realizes both successfully identifying all redundant link
generations and automatically adapting to different constraints
according to their inherent characteristics. We owe the ability
to MGs dedicatedly designed static-dynamic hybrid analysis.
Note that MG’s absolute improvements on the averaged ULR
measures can be 23–100% (mean: 83%) over CG and 9–100%
(mean: 75%) over OG, which are impressive.

Therefore, we conclude that MG can identify and eliminate
all link redundancy in the constraint checking and are capable
of adapting to all constraint types.

3) RQ3 (Benefits): Fig. 14 compares the time costs in the
link generation for CG, OG, and MG under the real-world
application scenario with 22 consistency constraints and 6.75
million context data.

From the figure, we observe that when combined with
different constraint checking techniques, although CG, OG,
and MG incurred different time costs, MG always worked most
efficiently. For example, MG spent only 0.14–0.34 minutes,
while CG spent 2.41–70.75 minutes and OG spent 2.11–
67.53 minutes. We note that all the three techniques generated
exactly the same final links in the constraint checking (all cor-
rect), and thus MG’s efficiency improvements on the link gen-
eration totally attributes to its greatly reduced link redundancy.

0 250 500 750 1,000 1,250 1,500
0%

20%

40%

60%

80%

100% CG
OG
MG

Fig. 13: ULR comparison for CG, OG, and MG

CG OG MG0

50

Ti
m
e
(m

in
) 70.75 67.53

0.14

ECC

CG OG MG0

2
2.41

2.11

0.15

PCC

CG OG MG0

20

40
31.83 33.21

0.34

Con-C

Fig. 14: Time cost comparison for CG, OG, and MG

CG: 8.9×10
10

(100%)

OG: 8.6×10
10

(96.7%)MG: 1.2×10
7

(<1%)

Fig. 15: Illustration of generated links for CG, OG, and MG

In particular, MG reduced 93.8–99.8% time cost (or 15–504x
speedup) over CG, and 92.9–99.8% time cost (or 13–481x
speedup) over OG, respectively. We owe MG’s significant time
reduction on the link generation to its dramatically removed
redundant link generation. To see it, we illustrate CG’s, OG’s,
and MG’s generated links in Fig. 15. We observe that MG’s
links (ULR = 100%) occupy only <1% of CG’s links (ULR
= 0.13%), while OG’s links (ULR = 0.14%) occupy 96.7%
of CG’s links. MG’s differences from CG and OG are indeed
huge. Besides, MG’s time reduction over existing work (CG
and OG) is comparable (with similar orders of magnitude) to
its MG’s link reduction, and this suggests that MG’s internal
S-CCT maintenance overhead is extremely small.

As aforementioned, the link generation is only part of the
whole constraint checking, which also includes the truth value
evaluation. Therefore, we also studied how MG’s improvement
on the link generation helps towards the improvement on the
checking efficiency of the whole constraint checking. Note
that the truth value evaluation is not affected by MG, and
thus MG’s contribution could be alleviated. Still, we observe
from the measurement that MG reduced 26.2–45.2% time cost
over CG for the whole constraint checking, and 22.3–45.4%
time cost over OG, respectively. Note that this achievement
was obtained over MG’s internal overhead, which is extremely
small, almost negligible (second-level). This also suggests that
as a kernel step in the constraint checking, the improvement
on the link generation can indeed bring additional benefits to
existing constraint checking techniques, and the benefits can
apply to all such techniques in a generic and transparent way.

Therefore, we conclude that MG can bring significant
efficiency improvements on the link generation (15–504x over
CG and 13–481x over OG), and promising improvements even
on the whole constraint checking (26.2–45.2% time reduction
over CG and 22.3–45.4% time reduction over OG).

D. Threat Analyses

One threat concerns the external validity of our experiments
and conclusions, since we used synthesized consistency con-
straints. To alleviate its impact, on one hand, we exhaustively
synthesized all well-formed constraints for analysis. Although

the height limit is only four, the constraints’ number reaches
1,658, and their types and combinations are complete for
analysis. Besides, we used synthesized constraints only in
the comparative study. We, on the other hand, also validated
MG’s effectiveness and compared to existing techniques under
a real-world application scenario with actual constraints and
millions of context data. The validation obtained consistent
results, echoing our earlier analysis in the comparative study.
Finally, to avoid possible bias, we re-implemented all link
generation and constraint checking techniques under the same
I/O interface and data structures. We would later release our
implementations for follow-up research.

V. RELATED WORK

Our work relates to existing research efforts on the consis-
tency management of software artifacts, which can be subject
to slow evolution or frequent changing.

Managing the consistency for such software artifacts effec-
tively support the applications that run with them for adaptive
or smart services. Traditional software artifacts are typically
static or evolving slowly, which include XML documents [6],
[26], [27], UML models [28]–[30], set-and-relation-based
models [31], workflows [32], and distributed algorithms [33].
Managing the consistency for such artifacts focuses mainly
on the reliability. Some new software artifacts that need
the consistency management require to take care of a new
requirement, efficiency, as such artifacts are typically dynamic
or even changing frequently. One example of such artifacts is
application contexts, which guide how an application reacts to
environmental changes and include many application scenar-
ios, e.g., Humanoid Companion Robot [34], Pollen Wise [35],
and self-driving vehicle systems [1], [2]. Some middleware
infrastructures have even be developed to dedicatedly support
such context-aware computing, e.g., Cabot [24], Adam [36],
Lime [37], and CARISMA [38].

Managing the consistency for application contexts needs to
identify problems in the contexts collected or derived from
environmental sensing or application executions. One way is
to deploy data-centric approaches to identify anomalies in
context data, i.e., cleaning noise in raw sensory data (e.g.,
missing and cross reads in RFID) [39]–[43], by filtering [39],
fuzzy matching [44], sequence-based rules [40], watermark
generation [45], or probabilistic methods [46].

The other way is to detect inconsistencies in the contexts
from the perspective of consistency constraints [6], [13], [47],
[48], which specify necessary properties about application
scenarios. This way is more generic, and has been exten-
sively studied. Its recent focus is on the efficiency, so that
applications can realize problems in its contexts and resolve
them in a timely manner [15]–[17]. Researchers have proposed
various acceleration techniques for speeding up the constraint
checking for efficient context inconsistency detection, e.g., full
checking (ECC) [6], incremental checking (PCC) [8], CPU-
based parallel checking (Con-C) [18], and GPU-based parallel
checking (GAIN) [19]. One interesting line of work supporting
this aspect is to selectively decide the timepoints the constraint

checking should be scheduled, so that unnecessary scheduling
can be suppressed [9], [20], thus contributing to more efficient
inconsistency detection in an indirect way.

Our work in this paper opens a new direction to support
more efficiency context inconsistency detection by removing
redundant link generation during constraint checking. Some
redundancy-reduction work from other fields has also been
studied, echoing our efforts in this work, e.g., avoiding re-
dundant table scans to speed up the SQL-MapReduce task
translation [49], avoiding redundant computations to speed up
GNN training [50], and simplifying floating-point computa-
tions to speed up look-table operations in neural networks [51].
Although the principles are similar, these efforts are closely
bound to their subjects, not applicable to our problem. In this
paper, we propose a substantial condition derivation based
technique MG to particularly address the link redundancy
problem in constraint checking. As reported in the experi-
ments, our work MG can achieve tens or hundreds of times
of speedup for link generation, and generally apply to existing
constraint checking techniques to bring extra efficiency bene-
fits by up to 45.4% time reduction. Therefore, this direction
would be promising to be combined with other improvement
aspects to together contribute to even more efficiency of
context inconsistency detection, thus guarding the reliability
of adaptive applications running in dynamic environments.

VI. CONCLUSION

In this paper, we tackled the link redundancy problem in
constraint checking, and proposed a novel technique, MG, to
automatically identify and remove redundant link generation,
without harming any checking result. We theoretically proved
MG’s soundness and completeness, and conducted both a
comparative study with synthesized consistency constraints
and a case study with large-volume real-world context data.
The study results validated MG’s effectiveness in eliminating
all link redundancy and improving the efficiency by 15–504x
on link generation over existing work. MG also supported
context inconsistency detection by an additional efficiency gain
up to 45.4% time reduction, automatically applicable to all
existing constraint checking techniques.

We are seeking ways to further validate MG under more
complex constraints (e.g., height over four) and other ap-
plication scenarios (e.g., unmanned drone and self-driving
vehicle context data). We also explore ways to automatically
reformulate constraints to be redundancy-free by construction,
rather than runtime remedy, which could be even more cost-
effective for applications.

ACKNOWLEDGMENT

This research was supported by the Natural Science Foun-
dation of Jiangsu Province under Grant Nos. BK20202001
and BK20220771, and the Natural Science Foundation of
China under Grant Nos. 61932021 and 62072225. The authors
would also like to thank the support from the Collaborative
Innovation Center of Novel Software Technology and Indus-
trialization, Jiangsu, China.

REFERENCES

[1] “Califronia DMV. 2020. autonomous vehicle disengagement reports,”
2020. [Online]. Available: https://www.dmv.ca.gov/portal/file/2020-
autonomous-vehicle-disengagement-reports-csv/

[2] D. Shepardson, H. Jin, and J. White, “Self-
driving car companies zoom ahead, leaving U.S. reg-
ulators behind,” Reuters, Feb. 2022. [Online]. Avail-
able: https://www.reuters.com/business/autos-transportation/self-driving-
car-companies-zoom-ahead-leaving-us-regulators-behind-2022-02-02/

[3] C. Ke, F. Xiao, Z. Huang, and F. Xiao, “A user requirements-oriented
privacy policy self-adaption scheme in cloud computing,” Frontiers of
Computer Science, vol. 17, no. 2, p. 172203, 2023.

[4] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” Wireless Networks, vol. 8,
no. 2, pp. 187–197, 2002, publisher: Springer.

[5] A. H. Van Bunningen, L. Feng, and P. M. Apers, “Context for ubiquitous
data management,” in International Workshop on Ubiquitous Data
Management. IEEE, 2005, pp. 17–24.

[6] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsteiin, “xlinkit: A
consistency checking and smart link generation service,” ACM Transac-
tions on Internet Technology (TOIT), vol. 2, no. 2, pp. 151–185, 2002.

[7] C. Xu, S.-C. Cheung, and W.-K. Chan, “Incremental consistency check-
ing for pervasive context,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 292–301.

[8] C. Xu, S.-C. Cheung, W.-K. Chan, and C. Ye, “Partial constraint check-
ing for context consistency in pervasive computing,” ACM Transactions
on Software Engineering and Methodology, vol. 19, no. 3, pp. 1–61,
2010.

[9] C. Xu, W. Xi, S.-C. Cheung, X. Ma, C. Cao, and J. Lu, “CINA:
Suppressing the detection of unstable context inconsistency,” IEEE
Transactions on Software Engineering, vol. 41, no. 9, pp. 842–865, 2015,
publisher: IEEE.

[10] Z. Mao, Y. Gu, B. Jiang, D. Xu, X. Sun, and W. Liu, “Incipient fault
diagnosis for high-speed train traction systems via improved lstm,”
Scientia Sinica Informationis, vol. 51, no. 6, pp. 997–1012, May 2021,
original document in Chinese.

[11] A. Ranganathan and R. H. Campbell, “An infrastructure for context-
awareness based on first order logic,” Personal and Ubiquitous Com-
puting, vol. 7, no. 6, pp. 353–364, 2003.

[12] I. Park, D. Lee, and S. J. Hyun, “A dynamic context-conflict management
scheme for group-aware ubiquitous computing environments,” in 29th
Annual International Computer Software and Applications Conference
(COMPSAC’05), vol. 1. IEEE, 2005, pp. 359–364.

[13] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing quality of
context in pervasive computing,” in 2006 Sixth International Conference
on Quality Software (QSIC’06). IEEE, 2006, pp. 193–200.

[14] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict resolution using logic
programming,” IEEE Transactions on Knowledge and Data Engineering,
vol. 15, no. 1, pp. 244–249, 2003.

[15] C. Xu, X. Ma, C. Cao, and J. Lu, “Minimizing the side effect of context
inconsistency resolution for ubiquitous computing,” in International
Conference on Mobile and Ubiquitous Systems: Computing, Networking,
and Services. Springer, 2011, pp. 285–297.

[16] C. Xu, S.-C. Cheung, W.-K. Chan, and C. Ye, “On impact-oriented
automatic resolution of pervasive context inconsistency,” in The 6th
Joint Meeting on European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering:
companion papers, 2007, pp. 569–572.

[17] ——, “Heuristics-based strategies for resolving context inconsistencies
in pervasive computing applications,” in 2008 The 28th International
Conference on Distributed Computing Systems. IEEE, 2008, pp. 713–
721.

[18] C. Xu, Y. P. Liu, S.-C. Cheung, C. Cao, and J. Lu, “Towards context con-
sistency by concurrent checking for internetware applications,” Science
China Information Sciences, vol. 56, no. 8, pp. 1–20, 2013.

[19] J. Sui, C. Xu, W. Xi, Y. Jiang, C. Cao, X. Ma, and J. Lu, “GAIN: GPU-
based constraint checking for context consistency,” in Proceedings of the
21st Asia-Pacific Software Engineering Conference, vol. 1, Jeju, South
Korea, Dec. 2014, pp. 319–326.

[20] H. Wang, C. Xu, B. Guo, X. Ma, and J. Lu, “Generic adaptive scheduling
for efficient context inconsistency detection,” IEEE Transactions on
Software Engineering, vol. 47, no. 03, pp. 464–497, mar 2021.

[21] L. Zhang, H. Wang, C. Xu, and P. Yu, “INFUSE: Towards efficient con-
text consistency by incremental-concurrent check fusion,” in Proceed-
ings of the 38th International Conference on Software Maintenance and
Evolution (ICSME 2022), Limassol, Cyprus, Oct. 2022, forthcoming.

[22] C. Xu, Y. Qin, P. Yu, C. Cao, and J. Lu, “Techniques for growing
software: Paradigm and beyond,” Scientia Sinica Informationis, vol. 50,
no. 11, pp. 1595–1611, Nov. 2020, original document in Chinese.

[23] C. Xu, S.-C. Cheung, and W.-K. Chan, “Goal-directed context valida-
tion for adaptive ubiquitous systems,” in ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. Minneapolis,
Minnesota, USA: IEEE Computer Society, 2007, pp. 1–10.

[24] C. Xu, S.-C. Cheung, C. Lo, K.-C. Leung, and J. Wei, “Cabot: On
the ontology for the middleware support of context-aware pervasive
applications,” in IFIP International Conference on Network and Parallel
Computing. Springer, 2004, pp. 568–575.

[25] J. Sui, C. Xu, S.-C. Cheung, W. Xi, Y. Jiang, C. Cao, X. Ma, and
J. Lu, “Hybrid cpu–gpu constraint checking: Towards efficient context
consistency,” Information and Software Technology, vol. 74, pp. 230–
242, 2016.

[26] S. P. Reiss, “Incremental maintenance of software artifacts,” IEEE
Transactions on Software Engineering, vol. 32, no. 9, pp. 682–697, 2006.

[27] C. Nentwich, W. Emmerich, A. Finkelsteiin, and E. Ellmer, “Flexible
consistency checking,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 12, no. 1, pp. 28–63, 2003.

[28] A. Egyed, “Instant consistency checking for the UML,” in Proceedings
of the 28th International Conference on Software Engineering, 2006,
pp. 381–390.

[29] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in Pro-
ceedings of the 30th ACM/IEEE International Conference on Software
Engineering. IEEE, 2008, pp. 511–520.

[30] “ArgoUML.” [Online]. Available: https://github.com/argouml-tigris-
org/argouml

[31] B. Demsky and M. C. Rinard, “Goal-directed reasoning for specification-
based data structure repair,” IEEE Transactions on Software Engineer-
ing, vol. 32, no. 12, pp. 931–951, 2006.

[32] C. Chen, C. Ye, and H.-A. Jacobsen, “Hybrid context inconsistency
resolution for context-aware services,” in 2011 IEEE International
Conference on Pervasive Computing and Communications (PerCom).
IEEE, 2011, pp. 10–19.

[33] A. Demuth, M. Riedl-Ehrenleitner, and A. Egyed, “Efficient detection
of inconsistencies in a multi-developer engineering environment,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 590–601.

[34] P.-H. Kuo, S.-T. Lin, J. Hu, and C.-J. Huang, “Multi-sensor context-
aware based chatbot model: An application of humanoid companion
robot,” Sensors, vol. 21, no. 15, p. 5132, 2021.

[35] “Pollen Wise - What’s in your air, when and where.” [Online]. Available:
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise

[36] C. Xu, S.-C. Cheung, X. Ma, C. Cao, and J. Lu, “Adam: Identifying
defects in context-aware adaptation,” Journal of Systems and Software,
vol. 85, no. 12, pp. 2812–2828, 2012.

[37] A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A coordination
model and middleware supporting mobility of hosts and agents,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 15, no. 3, pp. 279–328, 2006.

[38] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Context-aware
reflective middleware system for mobile applications,” IEEE Transac-
tions on software engineering, vol. 29, no. 10, pp. 929–945, 2003.

[39] S. R. Jeffery, M. Garofalakis, and M. J. Franklin, “Adaptive cleaning
for RFID data streams,” in Vldb, vol. 6. Citeseer, 2006, pp. 163–174.

[40] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby, “A deferred
cleansing method for RFID data analytics,” in Proceedings of the 32nd
international conference on Very large data bases. Citeseer, 2006, pp.
175–186.

[41] K. T. Patil, V. Bansal, V. Dhateria, and S. K. Narayankhedkar, “Probable
causes of RFID tag read unreliability in supermarkets and proposed
solutions,” in 2015 International Conference on Information Processing
(ICIP). IEEE, 2015, pp. 392–397.

[42] N. Fescioglu-Unver, S. H. Choi, D. Sheen, and S. Kumara, “RFID in
production and service systems: Technology, applications and issues,”
Information Systems Frontiers, vol. 17, no. 6, pp. 1369–1380, 2015.

[43] R. Want, “RFID: A key to automating everything,” Scientific American,
vol. 290, no. 1, pp. 56–65, 2004.

[44] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
efficient fuzzy match for online data cleaning,” in Proceedings of the
2003 ACM SIGMOD international conference on Management of data,
2003, pp. 313–324.

[45] Y. Song, Y. Li, H. Yang, J. Xu, Z. Luan, and W. Li, “Adaptive
watermark generation mechanism based on time series prediction for
stream processing,” Frontiers of Computer Science, vol. 15, no. 6, p.
156213, 2021.

[46] N. Khoussainova, M. Balazinska, and D. Suciu, “Towards correcting
input data errors probabilistically using integrity constraints,” in Pro-
ceedings of the 5th ACM international workshop on Data engineering
for wireless and mobile access, 2006, pp. 43–50.

[47] Y. Bu, S. Chen, J. Li, X. Tao, and J. Lu, “Context consistency
management using ontology based model,” in International conference
on extending database technology. Springer, 2006, pp. 741–755.

[48] C. Xu and S.-C. Cheung, “Inconsistency detection and resolution for
context-aware middleware support,” ACM SIGSOFT Software Engineer-
ing Notes, vol. 30, no. 5, pp. 336–345, 2005.

[49] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “YSmart:
Yet another SQL-to-MapReduce translator,” in 2011 31st International
Conference on Distributed Computing Systems, Jun. 2011, pp. 25–36.

[50] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken, “Redundancy-
free computation for graph neural networks,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’20). New York, NY, USA: Association for
Computing Machinery, Aug. 2020, pp. 997–1005.

[51] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “LookNN:
Neural network with no multiplication,” in Design, Automation and Test
in Europe Conference and Exhibition, 2007, Mar. 2017, pp. 1775–1780.

