
c
S

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

TIDY: A PBE-based framework supporting smart transformations for entity
onsistency in PowerPoint
huguan Liu, Huiyan Wang ∗, Chang Xu ∗∗

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
Department of Computer Science and Technology, Nanjing University, Nanjing, China

A R T I C L E I N F O

Keywords:
Programming by example
Rich-formatted documents

A B S T R A C T

Context: Programming by Example (PBE) is increasingly assisting human users by recognizing and executing
repetitive tasks, such as text editing and spreadsheet manipulation. Yet, existing work falls short on dealing
with rich-formatted documents like PowerPoint (PPT) files, when examples are few and collecting them is
intrusive.
Objective: This article presents TIDY, a PBE-based framework, to assist automated entity transformations for
their layout and style consistency in rich-formatted documents like PowerPoint, in a way adaptive to entity
contexts and flexible with user selections.
Methods: TIDY achieves this by examining entities’ operation histories, and proposes a two-stage framework
to first identify user intentions behind histories and then make wise next-operation recommendations for users,
in order to maintain the entity consistency for rich-formatted documents.
Results: We implemented TIDY as a prototype tool and integrated it into PowerPoint as a plug-in module. We
experimentally evaluated TIDY with real-world user operation data. The evaluation reports that TIDY achieved
promising effectiveness with a hit rate of 77.3% on average, which was stably holding for a variety of editing
tasks. Besides, TIDY took only marginal time overhead, costing several to several tens of milliseconds, to
complete each recommendation.
Conclusion: TIDY assists users to complete repetitive tasks in rich-formatted documents by non-intrusive user
intention recognition and smart next-operation recommendations, which is effective and practically useful.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
1. Introduction

Internetware applications are featured by context-awareness and
smart adaptation. Programming by examples (PBE) techniques are
enabling Internetware applications by learning from contexts (users’
inputs) and making required adaptations to substitute human repet-
itive actions (automating task executions by synthesized operations).
PBE [1], as an emergent and promising sub-field of program syn-
thesis [2], can free people with no programming background from
those tedious and repetitive tasks. Given some input–output examples
as the specification, a PBE technique can synthesize a program that
satisfies the specification and also generalizes well to new inputs. PBE
has been widely applied in many application domains such as data
wrangling/transformation [3,4] and code transformation [5,6].

However, there are limitations of typical PBE work on rich
-formatted documents. On one hand, many PBE systems require users
to enter a special mode to provide examples, and this could interrupt

∗ Corresponding author at: Department of Computer Science and Technology, Nanjing University, Nanjing, China.
∗∗ Corresponding author at: Department of Computer Science and Technology, Nanjing University, Nanjing, China.

E-mail addresses: liu_shuguan@126.com (S. Liu), cocowhy1013@gmail.com (H. Wang), changxu@nju.edu.cn (C. Xu).

users’ normal workflows and increase unexpected workloads. On the
other hand, although a specification consisting of useful examples could
sometimes be available from users, it can still lead to ambiguity, since
there could be multiple synthesized programs that ‘‘seemingly’’ satisfy
these examples. Therefore, in order to better synthesize an intended
program, it may still require a certain amount of high-quality examples.
Although some PBE work [7] might require seemingly only several
examples for specific cases, this achievement could restrict to certain
scenarios (e.g., string manipulation), in which the search space itself
may not be large and a few examples could already suffice. However,
for other complex scenarios, the work’s underlying machine learn-
ing mechanism may need more examples for a robust training. This
requirement can more than what can be afforded for rich-formatted
documents, e.g., PowerPoint, for the reason that therefore could be
only several entities aiming for the same operations in a page, while
spreadsheets can have much more (e.g., several tens or even hundreds
of) cells that carry the same computational tasks.
https://doi.org/10.1016/j.infsof.2021.106611
Received 29 October 2020; Received in revised form 15 March 2021; Accepted 29
 April 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:liu_shuguan@126.com
mailto:cocowhy1013@gmail.com
mailto:changxu@nju.edu.cn
https://doi.org/10.1016/j.infsof.2021.106611

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52
53
54

55

56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
For the above problems, this article proposes the following solution
TIDY: one does not have to ask users to provide examples in a special
mode; instead, users’ intentions (tasks to be completed) are identified
automatically through users’ history operations and their contexts; then
suggestions of recommended operations can be generated for relevant
entities for completing the intended task. Besides, to be flexible, rather
than pursuing the only intention, we suggest operations of several
possible user intentions and then gradually figure out the exact in-
tention when analyzing more user operations at runtime. Moreover,
concerning a specific rich-formatted document, to restrict the search
space and make its recommendation more accurate, TIDY would be
also integrated with a corresponding domain-specific goal library for
modeling common user intentions.

To be specific, our TIDY approach proposes a two-stage framework
to automatically maintain the entity consistency for rich-formatted doc-
uments. First, it would automatically identify user intentions from any
given user operation history, aiming to obtain a clear and executable
user intention behind the history. Second, based on such identified
user intention, TIDY would scan the whole document and generate
possible user next-operations for recommendation with prioritization.
Those recommended next-operations are expected to automatically
assist users to maintain entity consistency at runtime instead of the
original repetitive editing by users themselves without our TIDY. As
such, this article makes the following contributions: a domain-agnostic
framework providing recommendations for subsequent entities and
operations, and its specific technical implementation in the domain of
popular PowerPoint application.

To evaluate TIDY’s performance, we implemented TIDY as a pro-
totype toolkit and integrated it as a plug-in module into PowerPoint.
We evaluated TIDY’s effectiveness on recommending users’ true next-
operations by hit rate and time overhead. We observe that for a total
of 2363 collected real-world user histories from 21 participants, TIDY
achieved a promising hit rate 77.3% on average with its default set-
ting, suggesting its general effectiveness. Besides, TIDY’s effectiveness
consistently held across different factor settings. On the other hand,
TIDY’s time overhead was only several to several tens of milliseconds
per instance (7.2 ms on average), which is marginal and acceptable for
runtime operations, suggesting its practical usefulness.

The remainder of this article is organized as follows. Section 2
presents background knowledge for our target problem of maintaining
the entity consistency for rich-formatted documents. Section 3 intro-
duces necessary notions, and based on them elaborates on our TIDY
approach on identifying user intentions and making recommendation
for achieving the entity consistency. Then, Section 4 explains how
to apply TIDY to one of the most popular rich-formatted document
application, PowerPoint, and based on it, Section 5 evaluates TIDY’s
performance on both its effectiveness and efficiency in details. Section 6
discusses some issues concerning TIDY’s usage. After that, Section 7
discusses the related work in recent years, and Section 8 concludes this
article.

2. Background

In this section, we first introduce some background knowledge of
PBE, and then present an example on maintaining entity consistency
for motivating our work.

2.1. PBE background

Programming by Example (PBE) is a popular technique to help au-
tomatically generate programs from given examples of input–output
pairs. Formally, given a set of examples {𝑝1, 𝑝2, . . . , 𝑝𝑛}, each element
of which refers to an input–output pair like 𝑝𝑖 = ⟨𝑖𝑛𝑝𝑢𝑡𝑖, 𝑜𝑢𝑡𝑝𝑢𝑡𝑖⟩, a PBE
technique would generate a program 𝑃 that when fed by any existing
input 𝑖𝑛𝑝𝑢𝑡𝑖 of given examples, would produce its corresponding output
𝑜𝑢𝑡𝑝𝑢𝑡 correctly. Moreover, the logics in this generated program is
𝑖
expected to be generalizable to other similar examples. Usually, in
order to obtain an expected program 𝑃 , a PBE technique would require
a certain amount of examples in order to guide its space searching for
a proper program 𝑃 . Due to its nice superiorities on automatic input–
output transformations, PBE techniques have been successfully applied
to applications with great structural examples, e.g., spreadsheets [4,8],
file management [9], and data parsing and extraction [3].

However, for our targeted rich-formatted documents in this arti-
cle, only few PBE research [10] has been conducted for them, and
there are obvious challenges that: (1) rich-formatted documents usually
contain not enough examples for PBE’s program synthesis, and (2)
user intentions behind such formatted examples can be relatively more
subtle than value examples like spreadsheet cells. Our work specifically
targets at this problem, and aims to maintain entity consistency for rich-
document applications by a PBE-based framework, which derives and
instantiates clear user intentions from a few formatted examples, and
then instead of giving concrete synthesized programs, makes multiple
operation recommendations for users to choose from, which can also
support to adaptively evolve at runtime.

2.2. Motivating example

We give a motivating example in Fig. 1 to illustrate how entity
consistency should be maintained in rich-formatted documents like
PowerPoint. Fig. 1 gives an example illustrating with editing his-
tory in (a) and expected operations in (b) for entity consistency with
PowerPoint-alike pages. In Fig. 1(a), there are a total of nine entities on
the page, each of which refers to a colored rectangle (colored in blue
or purple).

Suppose a user has edited this page and moved entities 𝑒1 and 𝑒3 in
history to be bottom-aligned, as shown by the two arrows. The entities’
original locations before moving were drawn by dashed rectangles for
ease of illustration. To make the entity consistency, a desired approach
is expected to identify the possible user intention behind its 𝑒1 and 𝑒3
movements, i.e., ‘‘moving blue rectangles to be bottom-aligned’’, and
accordingly make suggested movements exactly as shown in Fig. 1(b),
i.e., moving 𝑒6, 𝑒7, and 𝑒9 to be bottom-aligned as well. Note that, in
such a formatted document, there are only two examples, with each
operation denoting a natural PBE example of the associated entity’s
original state as input and its present state as output, e.g., ⟨𝑒′1, 𝑒1⟩ and
⟨𝑒′3, 𝑒3⟩.

This can hardly meet the requirement of most normal PBE systems
to effectively synthesize its required program to conduct such oper-
ations due to their large program search space. Although some PBE
work [7] seems to only require several examples for specific cases
in recommendation, its kernel machine learning mechanism still asks
for quite plenty of examples for robust training when it comes to
scenarios other than certain scenarios (e.g., string manipulation), in
which the search space itself may not be large and a few examples
could already suffice. This could be more than what can be afforded for
rich-formatted documents, e.g., PowerPoint. The reason is that, unlike
spreadsheets having hundreds or even thousands of cells that need to
complete the same computational task, in a PowerPoint page, there
could be only several entities that need to do so.

Our TIDY approach would gradually derive a few different user
intentions from history operations, i.e., moving 𝑒1 and 𝑒3 with the aid
of domain-specific knowledge. Although by only analyzing 𝑒1’s move-
ment, TIDY may identify some other user intentions like ‘‘moving blue
rectangles downward by distance 𝑎’’, it would be naturally adjusted
or discarded when TIDY further analyses 𝑒3’s movement. By doing so,
TIDY can identify and present the most suitable user intentions behind
the collected movement history, e.g., ‘‘moving blue rectangles to be
bottom-aligned’’. After that, TIDY would search the whole document for
similar entities to existing moved entities, and suggest to apply similar
operations to complete this certain user intention. In this case, TIDY
would easily find all remaining blue entities (i.e., 𝑒 , 𝑒 , and 𝑒), clearly
6 7 9 126

S. Liu et al.

s1
2
3
4
5
6

7

8
9

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

T26
l27
q28
c29
y30
i31
i32
i33
i34
t35
i36

37
s38
t39
h40
t41
i42

43
44
Fig. 1. The motivating example. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3 45

46
f 47
s 48
s 49
𝑒 50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
haring the same color with existing 𝑒1 and 𝑒3, and then suggest to move
them as TIDY’s recommended next-operations for users to choose from,
as the check marks in Fig. 1(b). Instead of users’ repetitive operations
by moving all 𝑒6, 𝑒7, and 𝑒9 carefully to be bottom-aligned, one only
needs to make some clicks now. In the following, we would elaborate
on the details of our TIDY approach.

3. Methodology

In this section, we elaborate on our approach TIDY and explain
how to apply it to achieve entity consistency (e.g., layout and style
consistency) for rich-formatted documents, e.g., PowerPoint.

3.1. Overview

As we mentioned before, TIDY aims to understand user intentions
and effectively assist users through wise next-operation recommenda-
tion to achieve entity consistency, which usually requires repetitive
and exhaustive user operations. To do so, we divide this problem into
two parts. First, how to automatically identify the user intention from
obtained user operations in history, and second, how to, based on such
identified user intentions, make a wise next-operation recommendation
accordingly. We give an overview in Fig. 2. TIDY consists of two
corresponding stages and each stage uses two steps to achieve one
problem part as mentioned earlier.

In the first stage (User Intention Identification), in order to identify
the user intention, TIDY proposes the notion of goal for modeling
user intentions. To be specific, a goal is first selected from a prepared
goal library customized for a certain rich-formatted document type in
IDY’s application, which is general and abstract with parameters in the

ibrary at the beginning (i.e., a parameterized goal for simply denoting a
uite rough user intention direction), e.g., ‘‘make entities in a uniform
olor 𝑥’’. Then, it would be gradually instantiated during TIDY’s anal-
ses on obtained user operations in history (i.e., an instantial goal for
dentifying a specific user intention for analyzed operations), e.g., an
nstantial version of the former example probably being ‘‘make entities
n a uniform color of red’’. After that, TIDY can eventually identify
nstantial goals (parameter-free) for the analyzed operation history in
his stage, which denote clear user intentions and would later be fed
nto the second stage for the coming next-operation recommendation.

In the second stage (Next-operation Recommendation), TIDY would
can the document to identify some candidate entities relevant to
hose identified instantial goals associated with the given operation
istory for recommendation through entity relevance calculation, and
hen generate operations upon those entities for meeting the obtained
nstantial goals as next-operation recommendations with prioritization.

In the following, we first present some necessary notations and
definitions, and then elaborate on the TIDY approach in detail.
.2. Notations and definitions

Entity. An entity refers to a piece of object associated in rich-
ormatted documents [10]. In this article, we model an entity as a finite
et of key–value pairs representing its state information, each of which
pecifies an entity attribute and its associated attribute value, i.e., entity
= {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1 ∶ 𝑣𝑎𝑙𝑢𝑒1,… , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚 ∶ 𝑣𝑎𝑙𝑢𝑒𝑚}. For illustration, in a

popular rich-formatted document PowerPoint, a drawn rectangle entity
can be modeled as a key–value set of a rectangle object’s associated
attributes, e.g., Height, Width, etc. Different entities may be associated
with different attributes and attribute values.

Operation. An operation refers to a user manipulation relating to
attributes in a specific entity. We model an operation by specifying its
targeted entity for manipulation and attributes with expected values
of this operation. For example, an operation only to change entity 𝑒𝑘’s
attributes 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 to 𝑣𝑎𝑙𝑢𝑒′𝑖 and 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑗 to 𝑣𝑎𝑙𝑢𝑒′𝑗 can be modeled
as 𝑜𝑝 = ⟨𝑒𝑘, (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ∶ 𝑣𝑎𝑙𝑢𝑒′𝑖 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑗 ∶ 𝑣𝑎𝑙𝑢𝑒′𝑗)⟩. In this case,
𝑒𝑘 is 𝑜𝑝’s targeted entity, and straightforwardly, entity 𝑒𝑘 after this
operation would become: 𝑒𝑘 = {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1 ∶ 𝑣𝑎𝑙𝑢𝑒1,… , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 ∶
𝑣𝑎𝑙𝑢𝑒′𝑖 ,… , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑗 ∶ 𝑣𝑎𝑙𝑢𝑒′𝑗 ,… , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚 ∶ 𝑣𝑎𝑙𝑢𝑒𝑚}, with only
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 and 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑗 being changed in their values.

Goal. A goal refers to a user intention in manipulating objects.
We model a goal as manipulation targets of interesting attributes and
expressional descriptions for manipulation. For example, a goal ‘‘only
change the entity width to make an entity right-aligned’’ can be mod-
eled as: ⟨(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ), (𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡+𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ == 𝑥)⟩, while 𝑥 represents
a specific right-aligned location. For ease of presentation, we call those
attributes interesting to a goal to be this goal’s goal-targeted attributes.
This is a typical parameterized goal, with parameters in its expression,
representing a general user intention but still waiting to be instantiated.
If all parameters in a parameterized goal has been initialized with
specific values, we call it an instantial goal, and this process goal instan-
tiation. For example, ⟨(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ), (𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ == 100)⟩ is
a instantial goal, namely 𝑔𝑜𝑎𝑙1, which has no parameter that has not
been initialized yet, representing a clear and executable user intention
for ‘‘only change the entity width to make an entity right-aligned to
location 100’’. Moreover, such an instantial goal can directly guide
how to manipulate an entity for meeting this goal, easily producing
operations for recommendation. For example, assuming entity 𝑒𝑘 with
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑒𝑓 𝑡 and 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ being 80 and 5 at present, in order to meet
𝑔𝑜𝑎𝑙1, a natural manipulation is to change the goal-targeted attribute
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ from 5 to 20, so that 𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ == 100 in
𝑔𝑜𝑎𝑙1 would be satisfied. In this case, the operation for recommendation
(i.e., next-operation) is 𝑜𝑝 = ⟨𝑒𝑘, (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶ 20)⟩.

3.3. Stage 1: User intention identification

In this Stage, TIDY analyzes user operations in history for user inten-
tion identification, based on a parameterized goal library customized
for the target documents TIDY is applied to. To be specific, this stage
would first try to select related parameterized goals as candidates from

S. Liu et al.

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Fig. 2. TIDY overview.
46
47
48
49
50
51

52
53

𝑜 54
f 55
a 56
a 57
i 58
w 59
c 60

61
e 62
i 63
p 64
p 65
v 66
a 67
s 68
a 69
o 70
the library based on analyzing obtained user operations (step 1), and
then instantiate those selected parameterized goals (step 2) in order to
better support the latter next-operation recommendation.

3.3.1. Step 1: Parameterized goal selection
Assume all parameterized goals in the library to be 𝑔1, 𝑔2,… , 𝑔𝑚, and

obtained user operations in history to be 𝑜𝑝1, 𝑜𝑝2,… , 𝑜𝑝𝑛. TIDY regards
a goal to be related to an operation if this operation changes any of the
goal’s goal-targeted attributes. Therefore, given any user operation, it
is straightforward to identify its related goals from the library. Then,
TIDY proposes a backward relation analysis from 𝑜𝑝𝑛 to 𝑜𝑝1, to identify
their related goals individually, as detailed in Algorithm 1. Since we
observe that for a specific user intention, its associated user operations
tend to be continuous, TIDY tracks related goals backward from 𝑜𝑝𝑛
to 𝑜𝑝1, and selects only the goals that continuously exhibit related
from the ‘‘beginning’’ (𝑜𝑝𝑛) as goal candidates for selection. Meanwhile,
those specific continuous operations relating to each goal candidate
are its goal-related operations. For example, if goal 𝑔𝑘 relates to all
operations from 𝑜𝑝𝑛 back to 𝑜𝑝𝑖, with 𝑜𝑝𝑖−1 unrelated, then the goal is
one goal candidate for selection and operations 𝑜𝑝𝑛 to 𝑜𝑝𝑖 are its goal-
related operations. To be specific, each goal’s goal-related operations
(𝑜𝑝𝑖,… , 𝑜𝑝𝑛) actually compose a continuous operation subsequence of
the original user operation history (𝑜𝑝1, 𝑜𝑝2,… , 𝑜𝑝𝑛) with a necessary
𝑜𝑝𝑛. Note that, considering that users may possibly not stick to one
intention due to unexpected disturbance (e.g., jumping to some irrel-
evant actions unexpectedly), some unexpected operations may occur
in the middle of a collected sequence and somehow make a goal’s
associated operations non-consecutive. To alleviate possible problems,
we adopted a tolerance treatment in TIDY to allow a few unexpected
operations occurring (i.e., causing a non-consecutive or noisy sequence)
when handling a sequence of user operations for a specific goal. That is,
in Algorithm 1, we allow a few times matching failures with the setting
of a budget variable, which is initialized by a fed value of tolerance
size. To be specific, now in this algorithm, every time a matching
failure occurs (intersection being empty at Line 11), it would reduce
the budget variable by one (Line 12), and only when the variable value
becomes zero, TIDY would break the loop and stop the analysis. Note
that, with this tolerance treatment, only consecutive matching failures
would be counted in accumulation since the budget variable would
be reset each time a matching success occurs (Line 10). For example,
when the fed tolerance size is set to be two initially in Algorithm 1,
only TIDY meeting three consecutive matching failures would lead to
an analysis stop. In this way, the non-consecutive operation problem
can be alleviated. Detailed investigations about how different tolerance
sizes would affect TIDY’s effectiveness would be later discussed in

Section 5.3.2. 2
Until now, all selected goals are still parameterized, which cannot
be directly used for generating clear next-operations in recommenda-
tion. In order to help better conduct next-operations recommendation
and avoid confusions, TIDY in the following proposes to instantiate
them to obtain a clear and executable instantial goal for a clearer user
intention.

Algorithm 1: Parameterized Goal Selection
1 Function Parameterized Goal Selection(𝐻,𝐺𝐿, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒_𝑠𝑖𝑧𝑒):

// 𝐻 ∶ [𝑜𝑝1,… , 𝑜𝑝𝑛], 𝐺𝐿:the goal library
2 foreach pg in GL do
3 if 𝐻[𝐻.𝑙𝑒𝑛 − 1].𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑎𝑡𝑡𝑟𝑠 ∩ pg.targeted_attrs == ∅ then
4 continue;// must be 𝑜𝑝𝑛’s related goal

5 𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑜𝑝_𝑠𝑒𝑞 = [𝐻[𝐻.𝑙𝑒𝑛 − 1]];// necessary 𝑜𝑝𝑛
6 𝑏𝑢𝑑𝑔𝑒𝑡=𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒_𝑠𝑖𝑧𝑒
7 for 𝑘 ← 𝐻.𝑙𝑒𝑛−2 to 0 do
8 if 𝐻[𝑘].𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑎𝑡𝑡𝑟𝑠 ∩ pg.targeted_attrs! = ∅ then
9 insert 𝐻[𝑘] into the front end of 𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑜𝑝_𝑠𝑒𝑞
10 𝑏𝑢𝑑𝑔𝑒𝑡=𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒_𝑠𝑖𝑧𝑒

11 else
12 if − − 𝑏𝑢𝑑𝑔𝑒𝑡 < 0 then
13 break

14 𝑠𝑡𝑒𝑝1_𝑜𝑢𝑡𝑝𝑢𝑡.add(< 𝑝𝑔, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑜𝑝_𝑠𝑒𝑞 >) // empty at first

15 return 𝑠𝑡𝑒𝑝1_𝑜𝑢𝑡𝑝𝑢𝑡;

3.3.2. Step 2: Instantial goal generation
In the last step, for any given operation history in sequence,

𝑝1,… , 𝑜𝑝𝑛, TIDY selects the sequence’s related parameterized goals
rom the library and obtains each selected parameterized goal’s associ-
ted goal-related operations. Each parameterized goal actually denotes
general and rough user intention for its goal-related operations. Then,

n this step, we introduce how TIDY instantiates a parameterized goal
ith its goal-related operations to make the goal’s inner user intention

learer and executable.
Let a parameterized goal be 𝑔𝑠 in selection and its goal-related op-

rations be 𝑜𝑝𝑖,… , 𝑜𝑝𝑛. To do so, TIDY instantiates goal 𝑔𝑠 by analyzing
ts goal-related operations in a backward order. Starting from 𝑜𝑝𝑛, TIDY
uts actual attribute values of this operation’s targeted entity into the
arameterized expressions of goal 𝑔𝑠, thus trying to assign concrete
alues to its referred attributes. For example, as aforementioned, for
parameterized goal 𝑔𝑒 = ⟨(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ), (𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 +𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ == 𝑥)⟩,

uggesting a user intention of ‘‘only change the entity width to be right-
ligned’’, let the analyzed operation at the moment from its goal-related
perations be 𝑜𝑝𝑒 = ⟨𝑒𝑘, (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶ 80)⟩ and 𝑒𝑘 be {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑒𝑓 𝑡 ∶

0,… , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶ 40} originally before this operation. Then, when 71

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
o30

31
32
33
34
35
36
37
38

g 39
t 40
i 41
i 42

3 43

44
t 45
E 46
a 47
t 48
i 49
e 50
r 51
d 52
(53
c 54
e 55

3 56
57

e 58
a 59

60
… 61
e 62
𝐸 63
t 64
t 65
v 66
t 67
r 68
t 69
r 70
r 71
s 72

𝑟 73

74
d 75
o 76
n 77
a 78
a 79
a 80
i 81
𝑒 82
t 83
𝑣 84
e 85
a 86

𝐷 87
TIDY instantiates this parameterized goal 𝑔𝑒 with 𝑜𝑝𝑒, it assigns to
all attribute values in 𝑔𝑒’s parameterized expression with the attribute
values of this operation’s targeted entity (i.e., 𝑒𝑘 in this case), which
are updated if requested. That is, in 𝑔𝑒’s parameterized expression
(𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ == 𝑥), 𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 is assigned with 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑒𝑓 𝑡’s
original value 20, and 𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ is assigned with 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ’s up-
dated value 80 since 𝑜𝑝𝑒 has just changed it from 40 to 80 at the
moment to meet goal 𝑔𝑒. Therefore, with the expression now being
20 + 80 == 𝑥, it is natural to instantiate 𝑔𝑒’s parameter 𝑥 with value
100 and transform parameterized goal 𝑔𝑒 into an instantial goal 𝑔𝑒 =
⟨(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ), (𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ == 100)⟩.

We present details in Algorithm 2. For a parameterized goal 𝑔𝑠
in selection and its goal-related operations 𝑜𝑝𝑖,… , 𝑜𝑝𝑛, TIDY instan-
tiates goal 𝑔𝑠 by analyzing its goal-related operations in a backward
order (Line 8). Considering each analyzed operation, parameterized
expressions in 𝑔𝑠 would be instantiated with latest attribute values
of this operation’s targeted entity as aforementioned and then stored
(Line 9). If not all attribute values in 𝑔𝑠’s parameterized expressions
can be instantiated by an operation, we regard this operation to be
not practically related to this goal and stop the analysis process (Line
10). In every loop iteration, TIDY tries to solve stored expressions,
following a typical expression solve process [11] and then assign con-
crete values to 𝑔𝑠’s parameters (Line 11), e.g., 𝑥 in 𝑔𝑒 as mentioned
before. Otherwise, TIDY regards this goal to be not suitable yet for the
next-operation recommendation (Line 18), since its intention cannot be
identified clearly through its related user operations so far, including
both unsolvable (i.e., loop break (Line 20)) and multiple solution cases
(loop continue (Line 22)).

Algorithm 2: Instantial Goal Generation
1 Function Outer Loop(𝑠𝑡𝑒𝑝1_𝑜𝑢𝑡𝑝𝑢𝑡):

// Entrance for instantiating parameterized goals
2 foreach < 𝑝𝑎𝑟𝑎_𝑔𝑜𝑎𝑙, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑜𝑝_𝑠𝑒𝑞 > in 𝑠𝑡𝑒𝑝1_𝑜𝑢𝑡𝑝𝑢𝑡 do
3 𝑓𝑙𝑎𝑔, 𝑡𝑚𝑝 =Instantiate Goal(𝑝𝑎𝑟𝑎_𝑔𝑜𝑎𝑙, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑜𝑝_𝑠𝑒𝑞);
4 if flag then
5 𝑠𝑡𝑒𝑝2_𝑜𝑢𝑡𝑝𝑢𝑡.add(𝑡𝑚𝑝);// Successfully instantiated

6 return 𝑠𝑡𝑒𝑝2_𝑜𝑢𝑡𝑝𝑢𝑡;

7 Function Instantiate Goal(𝑝𝑔,𝑅𝐻):
// Goal instantiation for a parameterized goal 𝑝𝑔

8 for 𝑘 ← 𝑅𝐻.𝑙𝑒𝑛 − 1 to 0 do
9 try 𝐸= 𝑝𝑔.instan_attr_values(𝑅𝐻[𝑘]);
10 catch return <0, null>;
11 < 𝑠𝑡𝑎𝑡𝑒, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 > = Solve(𝐸𝑆.add(𝐸));
12 if 𝑠𝑡𝑎𝑡𝑒 == 1 then
13 𝑖𝑔 = 𝑝𝑔.instan(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛); // solution→instantial

goal
14 𝑠𝑒𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← (𝑅𝐻[𝑘].ori_entity …

𝑅𝐻[𝑅𝐻 .len-1].ori_entity);
15 while 𝑘 − 1 ≥ 0 and 𝑅𝐻[𝑘 = 𝑘 − 1] can match 𝑖𝑔 do
16 𝑠𝑒𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠.add(𝑅𝐻[𝑘].ori_entity);

17 return < 1, < 𝑖𝑔, 𝑠𝑒𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 >>;// unique solution

18 else
19 if 𝑠𝑡𝑎𝑡𝑒 == 0 then
20 break;// no solution, drop the goal

21 else
22 continue;// 𝑠𝑡𝑎𝑡𝑒 == −1, multiple solutions

23 return <0, null>;// still cannot have unique solution

24 Function Solve(ES):
25 … // solve expressions stored in ES
26 if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑛𝑢𝑚 == 1 then return <1, solution> ;
27 if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑛𝑢𝑚 == 0 then return <0, null> ;
28 else return <-1, null>;

For ease of the following presentation on the next-operation rec-
mmendation, TIDY also stores targeted entities of operations when
truly instantiating each goal (Line 17), composing a seed entity set, each
of which is a seed entity, referring to the actual object following the
clear user intention represented by this instantial goal. Note that, we
only emphasize such entity’s original attribute values (as 𝑜𝑟𝑖𝑒𝑛𝑡𝑖𝑡𝑦 in Line
16) before meeting the goal (i.e., before applying all these operations),
since TIDY in the following indeed tries to recommend next-operations
upon entities that have not met such goal.

As a summary, TIDY now instantiates its selected parameterized
oals into instantial goals, which suggest clear and executable user in-
entions for a sequence of related user operations. Then, based on such
nstantial goals, TIDY can make wise next-operation recommendation
n the next step.

.4. Stage 2: Next-operation recommendation

In this stage, TIDY tries to make a wise next-operation recommenda-
ion based on the obtained instantial goals and each goal’s seed entities.
ach of the former suggests a clear and executable user intention for
n operation sequence, and each of the latter suggests a specific entity
hat actually has been manipulated in history for meeting a specific
ntention represented by its associated instantial goal. To do so, for
ach instantial goal, TIDY would first scan the document for identifying
elevant entities to its seed entities, and treat them as possible candi-
ates for the following operation recommendation with prioritization
step 1). Then, based on details of this instantial goal, TIDY generates
oncrete and executable next-operations accordingly for each related
ntity (step 2).

.4.1. Step 1: Entity selection and prioritization
In this step, we introduce, given an instantial goal and its seed

ntities, how TIDY selects relevant entities from the whole document
nd prioritizes them for next-operation recommendation.

Given an instantial goal 𝑔𝑠 and its seed entity set 𝐸𝑆𝑠 = {𝑒𝑆1, 𝑒𝑆2,
, 𝑒𝑆𝑚}, TIDY first scans the document and obtain all remaining

ntities, i.e., 𝐸𝑆𝑟 = {𝑒𝑅1, 𝑒𝑅2, … , 𝑒𝑅𝑛}. Then, for each entity 𝑒𝑅𝑘 in
𝑆𝑟, TIDY calculates its relevance to 𝐸𝑆𝑠, and based on it, prioritizes

hese entities. To be specific, TIDY calculates 𝑒𝑅𝑘’s relevance score
o 𝐸𝑆𝑠 by accumulating all distances returned by comparing 𝑒𝑅𝑘’s
alue with those of entities in 𝐸𝑆𝑠, with respect to each attribute in
heir attribute intersection, i.e., 𝐼 = 𝑎𝑡𝑡𝑟(𝑒𝑅𝑘) ∩ 𝑎𝑡𝑡𝑟(𝐸𝑆𝑠), where 𝑎𝑡𝑡𝑟(𝑥)
eturns an attribute set associated with an entity or an entity set 𝑥. Note
hat, if any 𝑒𝑅𝑘’s intersection set is empty, it would be removed from
ecommendation naturally. Details of 𝑒𝑅𝑘 and 𝑔𝑠’s seed entity set 𝐸𝑆𝑠
elevance calculation are as follows (supposing 𝑔𝑠’s targeted attribute
et to be 𝐺).

𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑔𝑠, 𝑒𝑅𝑘, 𝐸𝑆𝑠) =

∑

𝑎𝑖∈𝐺

∑

𝑎𝑗∈𝐼
𝑊 (𝑎𝑖 ,𝑎𝑗)×𝐷𝑖𝑠(𝑒𝑅𝑘 ,𝐸𝑆𝑠 ,𝑎𝑗)
∑

𝑎𝑗∈𝐼
𝑊 (𝑎𝑖 ,𝑎𝑗)

𝑐𝑜𝑢𝑛𝑡(𝐺)
.

In this equation, 𝐷𝑖𝑠(𝑒𝑅𝑘, 𝐸𝑆𝑠, 𝑎𝑗) is designed to return a distance
egree between 𝑒𝑅𝑘 and 𝐸𝑆𝑠 with respect to their corresponding values
f attribute 𝑎𝑗 in their attribute intersection 𝐼 . To do so, TIDY treats
umeric and tag attributes differently. When attribute 𝑎𝑗 is a numeric
ttribute, 𝐷𝑖𝑠(𝑒𝑅𝑘, 𝐸𝑆𝑠, 𝑎𝑗) would compare whether the value of 𝑒𝑅𝑘’s
ttribute 𝑎𝑗 is in the value range of 𝐸𝑆𝑠’s entities with respect to
ttribute 𝑎𝑗 . If yes, it returns 1, or otherwise 0. When attribute 𝑎𝑗
s a tag attribute, 𝐷𝑖𝑠(𝑒𝑅𝑘, 𝐸𝑆𝑠, 𝑎𝑗) compares whether the value of
𝑅𝑘’s attribute 𝑎𝑗 occurs in any value of 𝐸𝑆𝑠’s entities with respect
o attribute 𝑎𝑗 . Formally, its calculation is as follows (𝑣𝑎𝑙𝑢𝑒() and
𝑎𝑙𝑢𝑒𝑆𝑒𝑡() return the corresponding value, respectively, for a certain
ntity or a set of values for a set of entities, with respect to a specific
ttribute):

𝑖𝑠𝑛𝑢𝑚 =

⎧

⎪

⎨

⎪

1, 𝑚𝑖𝑛(𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡(𝐸𝑆𝑠, 𝑎𝑗)) ≤ 𝑣𝑎𝑙𝑢𝑒(𝑒𝑅𝑘, 𝑎𝑗)
≤ 𝑚𝑎𝑥(𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡(𝐸𝑆𝑠, 𝑎𝑗)),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

⎩

S. Liu et al.

1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56

57

58
59
60
61
62
63

t 64

4 65

66
e 67

68
69
70
71
72
73
74
75
76
77
78

l 79
w 80
c 81
r 82
i 83
a 84
u 85
p 86
Fig. 3. Hierarchy tree structure of PowerPoint attributes.

𝐷𝑖𝑠𝑡𝑎𝑔 =
{

1, 𝑣𝑎𝑙𝑢𝑒(𝑒𝑅𝑘, 𝑎𝑗) ∈ 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡(𝐸𝑆𝑠, 𝑎𝑗),
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

With the distance degrees calculated for all attributes in 𝐼 , TIDY
also adopts different attribute weights W(𝑎𝑖, 𝑎𝑗) in calculating the final
relevance score, since we believe that different attributes should natu-
rally contribute differently to meet a certain instantial goal. In order to
make such a weight allocation scalable and avoid complex tuning, TIDY
adopts a domain hierarchy structure to measure the relevance of certain
attribute 𝑎𝑗 with respect to another attribute 𝑎𝑖 obtained from goal
𝑔𝑠’s interesting attributes. Such hierarchy structure can be accessible
in many fields including rich-formatted documents, e.g., file system’s
standard hierarchy [12], HTML’s keyword hierarchy structure [13],
and etc. For example, for a popular rich-formatted document like
PowerPoint, its attribute hierarchy is shown as in Fig. 3, with each
attribute as a leaf node [14]. Therefore, it would be straightforward for
TIDY to adopt the reciprocal of the path length (i.e., how many hops
along this tree structure from one attribute to another) between two
attribute nodes as weights, e.g., W(‘‘Left’’, ‘‘Size’’) = 1/4 (path: ‘‘Left’’
→ ‘‘Entity’’ → ‘‘TextFrame’’ → ‘‘Font’’ → ‘‘Size’’). More details about
TIDY’s application for PowerPoint would be given in Section 4.

As such, given an instantial goal and its seed entities, TIDY can pro-
duce relevance scores for all remaining entities, and then prioritize the
entities in selection for next-operation recommendation. If necessary,
one can also customize by pruning the selection using top 𝑁 entities
with highest.

3.4.2. Step 2: Next-operation generation and prioritization
In the last step, TIDY selects relevant entities to any specific instan-

tial goal 𝑔𝑠 based on their relevance scores calculated with respect to
goal 𝑔𝑠’s seed entity set 𝐸𝑆𝑠. Then, TIDY can now generate the cor-
responding next-operation for recommendation by analyzing selected
entities (e.g., 𝑒𝑠1 and 𝑒𝑠2) and goal 𝑔𝑠.

For example, suppose 𝑔𝑠 = ⟨(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ), (𝑣𝑎𝑙𝑢𝑒𝑙𝑒𝑓 𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑤𝑖𝑑𝑡ℎ ==
10)⟩ and the selected entities are 𝑒𝑠1 = {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑒𝑓 𝑡 ∶ 5, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶
4,…} and 𝑒𝑠2 = {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑒𝑓 𝑡 ∶ 3, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶ 8,…}. Then, the next-
operations for recommendation would be: 𝑜𝑝𝑠1 = ⟨𝑒𝑠1, (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶
5)⟩ and 𝑜𝑝𝑠2 = ⟨𝑒𝑠2, (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑤𝑖𝑑𝑡ℎ ∶ 7)⟩ in this case. Note that, such op-
eration generation is straightforward by assigning suitable attribute val-
ues for goal’s targeted attributes. If such value assignments have mul-
tiple solutions, TIDY returns a random one for application or multiple
ones for its user to select from.

After generating next-operations for any obtained instantial goal
and corresponding relevant entities, TIDY adopts a two-phase priori-
tization. First, for different instantial goals, TIDY prioritizes them by
considering the entity number of their related seed entity sets, since
we believe that with more entities in a goal’s seed entity set, with
more confidence it actually exposes the true user intention behind the

given user operation history. Second, for a specific goal, TIDY also
Table 1
Selected attributes in applying TIDY to PowerPoint.

Selected attributes

Id Top Left Height
Width Type AutoShapeType FontSize
FontName FontItalic FontBold Underline
Text ForeRGB LineRGB Weight
DashStyle Rotation EntryEffect Visible
BackgroundStyle BlackWhiteMode HorizontalFlip Child
LockAspectRatio ShapeStyle VerticalFlip Style
3DVisible 3DDepth AdvanceTime Animate
ConnectionSiteCount ChartColor ChartStyle ChartType
ObjectThemeColor TintAndShade FirstCol FirstRow
HorizBanding LastCol LastRow VertBanding
AutoSize Transparency AdvanceMode ZOrderPosition
TopMargin LeftMargin BottomMargin RightMargin

prioritizes its associated next-operations for any remaining entity in
recommendation according to this remaining entity’s relevance score
with the goal’s seed entities, as calculated in Section 3.4.1.

As a summary, combing these two stages together, TIDY can now
identify user intentions from a given user operation history, and then
make next-operation recommendation afterward. In the following, we
continue to introduce how to apply TIDY to suggest and maintain
the entity consistency in the PowerPoint application, and evaluate its
effectiveness experimentally in turn.

4. TIDY’s application to PowerPoint

In this section, we introduce how to apply our TIDY approach to
the popular rich-formatted document application PowerPoint for its
automated entity consistency. We first give some details about TIDY’s
application on PowerPoint, especially concerning its goal library design
and relevance calculation specific to the PowerPoint object hierarchy.
Then, we exhibit on some realization details about our TIDY’s prototype
oolkit as a PowerPoint plug-in module.

.1. Goal library design

In order to design a proper library for TIDY’s application on Pow-
rPoint, it is essential to clarify how to accordingly adapt TIDY’s

notations. For example, for PowerPoint, an entity usually refers to an
instance of an object on a PowerPoint page, e.g., a rectangle, a circle,
a textbox, a picture, a chart, etc. To better describe and distinguish
entities and their associated user operations, PowerPoint also provides
massive attributes in its object model [14]. To apply TIDY, we select
52 representative attributes in PowerPoint’s normal usage, and details
are shown in Table 1. These selected attributes concern diverse entity
characteristics like object location, coloring, text font, size, style, etc,
and those selected attributes and corresponding values would be used
to identify entities and entity operations when applying TIDY.

After that, based on such attributes, we accordingly design a goal
ibrary including 26 different parameterized goals, as shown in Table 2,
hich achieve diverse and representative layout consistency and style

onsistency for PowerPoint. For example, alignment is one of the most
epresentative layout consistency types for PowerPoint entities, and
n designing such a goal library, we consider multiple alternatives of
lignment for completeness. As such, the goal library would then be
sed in TIDY and support its user intention identification, and those
arameterized goals in the library would be instantiated during TIDY’s

analyses to achieve the next-operation recommendation.
 87

S. Liu et al.

1

2
3
4
5
6
7
8
9

10

11

12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Table 2
TIDY’s goal library designed specific for PowerPoint.

Type Targetd attribute Expressional descriptions General description

1

Left 𝑣𝑎𝑙𝑢𝑒𝐿𝑒𝑓𝑡 == 𝑥 Left-aligned
Top 𝑣𝑎𝑙𝑢𝑒𝑇 𝑜𝑝 == 𝑥 top-aligned
Width 𝑣𝑎𝑙𝑢𝑒𝐿𝑒𝑓𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑊 𝑖𝑑𝑡ℎ == 𝑥 Right-aligned (change Width)
Left 𝑣𝑎𝑙𝑢𝑒𝐿𝑒𝑓𝑡 + 𝑣𝑎𝑙𝑢𝑒𝑊 𝑖𝑑𝑡ℎ == 𝑥 Right-aligned (change Left)
Height 𝑣𝑎𝑙𝑢𝑒𝑇 𝑜𝑝 + 𝑣𝑎𝑙𝑢𝑒𝐻𝑒𝑖𝑔ℎ𝑡 == 𝑥 Bottom-aligned (change Height)
Top 𝑣𝑎𝑙𝑢𝑒𝑇 𝑜𝑝 + 𝑣𝑎𝑙𝑢𝑒𝐻𝑒𝑖𝑔ℎ𝑡 == 𝑥 Bottom-aligned (change Top)

2

FontSize 𝑣𝑎𝑙𝑢𝑒𝐹𝑜𝑛𝑡𝑆𝑖𝑧𝑒 == 𝑥 Unify the font size
FontBold 𝑣𝑎𝑙𝑢𝑒𝐹𝑜𝑛𝑡𝐵𝑜𝑙𝑑 == 𝑥 Unify whether bold or not
FontItalic 𝑣𝑎𝑙𝑢𝑒𝐹𝑜𝑛𝑡𝐼𝑡𝑎𝑙𝑖𝑐 == 𝑥 Unify italic or not
Underline 𝑣𝑎𝑙𝑢𝑒𝑈𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒 == 𝑥 Unify underlined or not
FontName 𝑣𝑎𝑙𝑢𝑒𝐹𝑜𝑛𝑡𝑁𝑎𝑚𝑒 == 𝑥 Unify the font (e.g., Arial)
ForeRGB 𝑣𝑎𝑙𝑢𝑒𝐹𝑜𝑟𝑒𝑅𝐺𝐵 == 𝑥 Unify the shape-filling color
LineRGB 𝑣𝑎𝑙𝑢𝑒𝐿𝑖𝑛𝑒𝑅𝐺𝐵 == 𝑥 Unify the shape outline color
Weight 𝑣𝑎𝑙𝑢𝑒𝑊 𝑒𝑖𝑔ℎ𝑡 == 𝑥 Unify the shape outline weight
DashStyle 𝑣𝑎𝑙𝑢𝑒𝐷𝑎𝑠ℎ𝑆𝑡𝑦𝑙𝑒 == 𝑥 Unify the outline dash style
EntryEffect 𝑣𝑎𝑙𝑢𝑒𝐸𝑛𝑡𝑟𝑦𝐸𝑓𝑓𝑒𝑐𝑡 == 𝑥 Unify the entry effect
Rotation 𝑣𝑎𝑙𝑢𝑒𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 == 𝑥 Unify the rotation angle
Width 𝑣𝑎𝑙𝑢𝑒𝑊 𝑖𝑑𝑡ℎ == 𝑥 Unify the width
Height 𝑣𝑎𝑙𝑢𝑒𝐻𝑒𝑖𝑔ℎ𝑡 == 𝑥 Unify the height

3

Left 𝛥𝑣𝑎𝑙𝑢𝑒𝐿𝑒𝑓𝑡 == 𝑥 Move by the same distance horizontally
Top 𝛥𝑣𝑎𝑙𝑢𝑒𝑇 𝑜𝑝 == 𝑥 Move by the same distance vertically
Width 𝛥𝑣𝑎𝑙𝑢𝑒𝑊 𝑖𝑑𝑡ℎ == 𝑥 Unify the variation of width
Height 𝛥𝑣𝑎𝑙𝑢𝑒𝐻𝑒𝑖𝑔ℎ𝑡 == 𝑥 Unify the variation of height
FontSize 𝛥𝑣𝑎𝑙𝑢𝑒𝐹𝑜𝑛𝑡𝑆𝑖𝑧𝑒 == 𝑥 Increase or decrease the same font size
Weight 𝛥𝑣𝑎𝑙𝑢𝑒𝑊 𝑒𝑖𝑔ℎ𝑡 == 𝑥 Unify the variation of outline weight
Rotation 𝛥𝑣𝑎𝑙𝑢𝑒𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 == 𝑥 Rotate by the same angle

Type: 1. layout consistency 2. style consistency 3. both layout and style consistency.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

55
56
57

58

59
60
61
62
63
64
4.2. Powerpoint object hierarchy

As we mentioned in Section 3.4.1, when calculating relevance scores
for selecting entities for recommendation, TIDY adopts a domain hier-
archy structure to measure attribute weights W(𝑎𝑖, 𝑎𝑗). When applying
TIDY to PowerPoint, we customize this application by using a general
PowerPoint’s attribute hierarchy as shown in Fig. 3, with each attribute
as a leaf node [14]. We defines ℎ𝑜𝑝𝑠(𝑎𝑖, 𝑎𝑗) to calculate how many
hops along this tree structure between two attribute nodes 𝑎𝑖 and 𝑎𝑗 ,
and W(𝑎𝑖, 𝑎𝑗) to be its reciprocal. Then, the corresponding W(𝑎𝑖, 𝑎𝑗) is
calculated as follows:

𝑊 (𝑎𝑖, 𝑎𝑗) =
{

1∕ℎ𝑜𝑝𝑠(𝑎𝑖, 𝑎𝑗), 𝑖 ≠ 𝑗,
1, 𝑖 = 𝑗.

For example, 𝑊 (‘‘Left’’, ‘‘Size’’) is 1/4, since ℎ𝑜𝑝𝑠(‘‘Left’’, ‘‘Size’’) =
4 (path ‘‘Left’’ → ‘‘Entity’’ → ‘‘TextFrame’’ → ‘‘Font’’ → ‘‘Size’’ has four
hops).

4.3. Prototype toolkit details

We implemented TIDY as a VSTO (Visual Studio Tools for Office)
plug-in module for being integrated into PowerPoint using C#. The
plug-in’s user interface is shown as Fig. 4.

A user can turn on and off TIDY’s recommendation service by simply
clicking the start and stop buttons on the right column of the screen.
During TIDY’s execution, it silently collects the user’s operations on
PowerPoint’s editing page in the middle. If TIDY identifies a clear
user intention, it will provide next-operation recommendation with
several alternatives, and each recommended next-operation is shown
as a preview of the operation effect and a small blue button at the top
right-hand corner. One can choose to click the blue button to accept
a corresponding recommended operation so as to directly apply its
effect to the middle edit page. Since PowerPoint itself does not support
buttons on the edit page, we used the mouse hook technique [15] to
visually present our recommendation as a button-alike effect to the user
as illustrated. To do so, all previews and buttons for recommendation
are created temporarily as PowerPoint shapes, and the mouse hook
returns the clicked button. If the user does not click any button, all
previews and buttons for recommendation will automatically disap-
pear once the next user editing operation occurs. Note that, since the
position of the edit page is not always fixed, the plug-in also adopts
automatic position correction to ensure TIDY to work as expected.

Besides, to allow users to undo and redo their choices on recom-
mended operations occasionally, we also implemented additional undo
and redo functionalities in this plug-in service, since sometimes users
may accidentally accept/skip recommendations unexpectedly.

Furthermore, TIDY targets at maintaining entity consistency for
rich-formatted documents, by recommending operations to achieve
consistent entities in practice. For those user intentions that are not rel-
evant to entity consistency (e.g., a user changes a rectangle’s alignment,
and then changes another rectangle’s color to yellow and a circle’s
color to yellow too), it would not what TIDY focuses on. Enforcing
TIDY to work in this situation would clearly produce recommenda-
tions unexpectedly. We consider this to belong to users’ choices. To
avoid causing confusion or disturbance to users when they are not for
entity consistency, we have designed a stop button in the TIDY plug-
in module, for users to temporarily disabling TIDY’s recommending
service.

5. Evaluation

In this section, we evaluate the performance of TIDY, concerning
its application to the popular rich-formatted document application
PowerPoint for its automated maintenance of entity consistency.

5.1. Research questions

We aim to answer the following three research questions:
RQ1 (Effectiveness): How effective is TIDY on its wise next-operation

recommendation for achieving PowerPoint’s entity consistency?
RQ2 (Factors): How do different factors affect TIDY’s effectiveness?
RQ3 (Overhead): How much overhead does TIDY take to make rec-

ommendations, and does it compromise TIDY’s effectiveness?

S. Liu et al.

1

2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

q39
40
41
42
Fig. 4. (A) Start and stop buttons. (B) After the first textbox (TEXT 1) was moved to right, TIDY gave recommendations (two dotted boxes as the preview) for moving the second
(TEXT 2) and third (TEXT 3) textboxes to right and being aligned with the first textbox. (C) Position correction for the mouse hook. (D) Undo and redo buttons. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

i 66

5 67
68

q 69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
5.2. Experimental design and setup

To answer the three research questions, we first introduce how to
obtain practical user operation history, and its true next-operations
would serve as the ground truths for our experiments. Then, we explain
the experimental setup and how to answer the three research questions
individually.

5.2.1. Experimental preparation
To obtain practical user operations and their corresponding next-

operations on PowerPoint, we invited 21 participants for 5 editing tasks
concerning diverse and popular PowerPoint functionalities.

Participants and tasks. On one hand, we invited 21 participants
with diverse PowerPoint skills, including 3 teachers, 6 Ph.D. students,
9 MSc students, and 3 undergraduate students. In order to avoid biases,
we make sure all participants to be unaware of our TIDY methodology.
On the other hand, adapted from popular examples on PowerPoint’s
online forums [16], we designed 5 tasks including a total of 21 mini-
tasks for each participant. Those 5 tasks contain diverse categories
of entities in PowerPoint (e.g., shapes, textboxes, art words, pictures,
etc.), and the task design covers diverse user intentions upon each task.
Details are shown in Table 3.

Collection process. We asked all participants to finish such tasks
alone, and collected their user operations accordingly. To collect the
operation sequences generated by participants non-intrusively, we ad-
ditionally developed a plug-in for logging operations in PowerPoint.
It would silently log participants’ operations upon each page, and
accordingly store them to the disk. In our experiments, we sent the
tasks and the plug-in to all participants, and asked them to complete
all the tasks with the log plug-in enabled. Meanwhile, we also asked
them to use screen-capturing software to record the entire process of
completing the tasks, for double-checking.

Ground truths. As a total, we collected 101 valid user operation
history logs (manually removing 4 invalid ones when participants
failed to finish tasks), each of which refers to an operation sequence
representing a participant’s editing history for one task. On average,
each participant spent 20 min finishing these tasks. To obtain our
expected ground truths of an operation history and corresponding next-
operation, we partition each log to be a prefix subsequence representing
an operation history (namely history sequence) and its following subse-
uence to be its next-operation sequence (namely follow-up sequence).

That is, for a log with length 𝑛, i.e., 𝑜𝑝1, 𝑜𝑝2,… , 𝑜𝑝𝑛, one can easily
partition it by 𝑥, i.e., any value in [1, 𝑛). Then, it regards the prefix sub-
sequence 𝑜𝑝 , 𝑜𝑝 ,… , 𝑜𝑝 as its history sequence, and the next operation
1 2 𝑥
of that subsequence 𝑜𝑝𝑥+1,… , 𝑜𝑝𝑛 as its follow-up sequence for next-
operations. Such instances of both history sequences and corresponding
follow-up sequences constitute natural datasets for evaluating TIDY,
with ground truths available. For example, in order to complete the
three mini-tasks of task 1, participant #19 performed a total of 25
operations, and therefore we naturally obtained 24 instances from this
log.

Generally, each log is an operation sequence performed by a par-
ticipant to complete our tasks as shown in Table 3, and each task is
composed of several mini-tasks. For the integrity of ground truths, if
a participant does not complete all mini-tasks in a task, we consider
the corresponding log to be invalid for experiments (e.g., potentially
biased to experimental results). We obtained a total of 2363 instances
by partitioning 101 valid user operation history logs, after discarding
those logs indicating that participants failed to finish any mini-task. The
average length of history sequences and that of follow-up sequences
are 17.2 and 17.1, respectively. To be specific, we removed three task
logs from participants #4 (task 1), #12 (task 1), and #13 (task 2),
since they all accidentally skipped one of their mini-tasks. Moreover,
we did not collect any task log from participant #15 (task 5), since he
skipped the entire task 5 accidentally in our collection. Note that such
2363 instances in collection cover all 26 goals in TIDY’s goal library, as
shown in Table 2. These instances would be used for evaluating TIDY
n the following.

.2.2. Experimental setup
To evaluate TIDY and answer the aforementioned three research

uestions, we designed the following independent variables:

• Hit distance limit. We restrict the hit distance limit of TIDY’s
recommended next-operations in the follow-up sequence in eval-
uation. We regard ‘‘hit’’ to be satisfied, only when TIDY’s recom-
mended next-operation appears within the hit distance limit in its
corresponding follow-up sequence. We controlled the hit distance
limit from one to fifteen with a pace of one since we consider
the operations too far to be less relevant in recommendation.
We set the default value of the hit distance limit to one, for the
reason that it denotes the most challenging setting. That is, for
the given history sequence 𝑜𝑝1,… , 𝑜𝑝𝑥, when setting the default
value for the hit distance limit to be one, ‘‘hit’’ is restricted to be
satisfied only when TIDY successfully recommends the exact next
user operation 𝑜𝑝𝑥+1 without any mistake. Therefore, this setting
represents the most restrict application scenario, which is also the
most expected by users in practice.

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

33
34
35
Table 3
Designed tasks for all participants.

Task description

Task 1: Arrange tables and shapes for alignment

1. Move all tables to make them left-aligned in any arbitrary location.
2. Arrange all rectangle shapes to three horizontal rows by color and make rectangles in the same row bottom-aligned (overlapping between shapes is always allowed).
3. Pick a rectangle shape in an arbitrary color, change its length without moving it, and then make the lengths of other rectangles in that color to the same as it.

Task 2: Adjust charts and art words for consistent styles

1. Some charts or art words do not have animation effects upon entering this page. Please add an arbitrary entrance animation effect for each of them.
2. Pick all charts or all art words (choose only one type), and turn their entrance animation effects into the same one.
3. Adjust the lengths of art words and make them right-aligned in an arbitrary place.
4. Pick an arbitrary color, and change the borders of all art words or charts (choose only one type) to that color.

Task 3: Paint and adjust shapes for consistent styles

1. Draw four or five rectangles of different sizes and four or five circles of different sizes.
2. Pick four or more tilted images or textboxes, and rotate them to upright.
3. Adjust the sizes of all shapes of an arbitrary type (rectangle or circle) to be consistent.
4. Pick an arbitrary color, and fill all shapes of an arbitrary type with this color.

Task 4: Adjust textboxes for consistent styles

1. Pick any used font color, and change textboxes’ font in this color to Times New Roman.
2. Pick any used font color, and change all borders of textboxes in this color to the same weight, such like 1.5, 2.25, or 3 pt.
3. Pick a state between tilting or not tilting, and change all font sizes of the textboxes with this state to 16. Then change font sizes of textboxes with the other state by
the same reduction.
4. Change all bold textboxes or all non-bold textboxes to italics. Then add underline style to the textboxes of the other type.
5. Pick three arbitrary non-bold textboxes and make their text bold.

Task 5: Paint and adjust shapes for alignment and consistent styles

1. Insert 𝑥 circles, 𝑦 rectangles, and 𝑧 triangles to make 𝑥 + 𝑦 + 𝑧 = 15.
2. Move all shapes of one type to make them top-aligned in any arbitrary place.
3. Take all shapes of one type and increase their borders by the same weight.
4. Take all shapes of one type and change their line types of borders into short dash.
5. Take all shapes of one type and rotate them by 90 degrees clockwise.
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60

61
62
63
64
65
66
• Slot limit. Our TIDY approach makes its recommendation with pri-
oritization. In order to better evaluate how effective its prioritized
recommendation is, we control this variable to denote the number
of recommendation candidates that TIDY can recommend for each
specific user intention. We control it from one to twenty with
a pace of one. We set the default value of it to be 10 since its
corresponding TIDY’s effectiveness can be stably satisfactory, as
investigated in Section 5.3.2 later.

• Tolerance size. As mentioned in Section 3.3.1, TIDY is integrated
with a special treatment for tolerating unrelated operations dur-
ing examining practical sequences. We use tolerance size to rep-
resent the specific budget, which refers to the specific budget for
consecutive matching failures allowed in TIDY’s goal examination
every time. When the tolerance size is restricted to 𝑘, TIDY would
conduct its backward analysis by allowing 𝑘 unrelated operations
continuously in one goal examination. That is, as long as the
number of continuous unrelated operations during matching is
not greater than 𝑘, the backward analysis will continue.

• Goal prioritization. Our TIDY approach also identifies different
user intentions as its instantial goals with prioritization in anal-
ysis. In order to better evaluate how effective its identified user
intentions’ prioritization is, we also control this variable to further
investigate how differently TIDY’s prioritized user intention affect
its performance, thus suggesting the effectiveness of TIDY’s user
intention prioritization.

• Task. We control this variable to study how each individual task
setting affects TIDY’s performance.

• Participant. We control this variable to study how different partic-
ipant characteristics affects TIDY’s performance, e.g., participant
occupation, gender, etc.

Then, to evaluate TIDY’s performance concerning its effectiveness
and efficiency, we designed the following dependent variables:

• Hit rate. For any given instance, if TIDY can successfully recom-
mend at least one operation which is in the follow-up sequence

within the controlled hit distance limit, we regard it as ‘‘hit’’.
Then, accordingly, we measure the hit rate as the proportion of
‘‘hit’’ times against 2363 instances.

• Time overhead. We measure the time overhead by the amount
of time TIDY spent on making recommendations for any given
history sequence.

All experiments were conducted on a commodity PC with Intel(R)
Core(TM) i5-9500 CPU @ 3.00 GHz with 16.0 GB RAM. The machine
was installed with MS Windows 10 and Oracle Java 15.

To answer RQ1 (Effectiveness). We calculate the hit rate of TIDY’s
next-operation recommendations for all collected history sequences
concerning its follow-up sequences as ground truths. We control the hit
distance limit to 1, slot limit to 10, and tolerance size to 1, respectively,
as a default setting when answering this research question.

To answer RQ2 (Factors). We first assign different values to in-
vestigate how different hit distance limits, slot limits, and tolerance
sizes affect TIDY’s effectiveness especially concerning hit rates. Mean-
while, we also look into TIDY’s stableness and variance in its effective-
ness with respect to other factors, e.g., goal prioritization, tasks, and
participants.

To answer RQ3 (Overhead). We measure TIDY’s time overhead
in making recommendations to all history sequences, and investigate
whether the overhead would compromise TIDY’s effectiveness.

5.3. Experimental results and analyses

We report and analyze experimental results, and answer the preced-
ing three research questions in turn.

5.3.1. RQ1: Effectiveness
To evaluate TIDY’s effectiveness, we conducted TIDY’s recommen-

dation for all collected instances, each of which include a history
sequence as the fed data to TIDY and a follow-up sequence as the
ground truth for evaluation. As shown in Table 4, we collected 2363
instances in total, which concern all 21 participants and our designed
five tasks, as mentioned earlier in Section 5.2.1.
 67

S. Liu et al.

1
2
3

s4
a5
a6
87
88

9
T10
d11
d12

513
14

l15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Table 4
Descriptions and hit rates analyses for all participants and tasks (UG: undergraduate; ins.: instances).
Id Description # ins./# tasks Hit rate (task 1, 2, 3, 4, 5)

1 MSc, female 125/5 76.0% (66.7%, 63.6%, 72.2%, 82.4%, 83.3%)
2 PhD, female 114/5 80.7% (77.8%, 77.8%, 75.0%, 83.0%, 84.2%)
3 PhD, male 109/5 81.7% (80.8%, 84.6%, 77.8%, 81.8%, 82.4%)
4 MSc, male 90/4 75.6% (–, 66.7%, 63.6%, 77.6%, 83.3%)
5 MSc, male 114/5 76.3% (62.5%, 85.7%, 81.8%, 77.8%, 83.3%)
6 MSc, male 120/5 70.8% (57.6%, 75.0%, 70.0%, 73.1%, 88.2%)
7 PhD, male 113/5 83.2% (83.3%, 83.3%, 77.8%, 85.0%, 83.3%)
8 Teacher, male 118/5 82.2% (85.7%, 70.0%, 75.0%, 83.7%, 84.2%)
9 PhD, male 100/5 71.0% (79.2%, 66.7%, 72.7%, 61.9%, 82.4%)
10 Teacher, male 113/5 71.7% (65.5%, 87.5%, 75.0%, 71.4%, 73.7%)
11 PhD, male 118/5 79.7% (82.1%, 87.5%, 84.6%, 74.0%, 84.2%)
12 Teacher, male 84/4 76.2% (–, 75.0%, 66.7%, 76.0%, 83.3%)
13 MSc, male 102/4 76.5% (83.3%, –, 80.0%, 74.0%, 72.2%)
14 MSc, male 123/5 80.5% (85.2%, 83.3%, 68.8%, 80.0%, 83.3%)
15 MSc, male 103/4 73.8% (74.1%, 84.6%, 76.9%, 70.0%, –)
16 MSc, female 129/5 67.4% (68.6%, 66.7%, 66.7%, 67.3%, 66.7%)
17 UG, female 116/5 81.0% (80.6%, 77.8%, 66.7%, 84.3%, 81.3%)
18 UG, male 113/5 80.5% (84.0%, 63.6%, 83.3%, 81.6%, 81.3%)
19 UG, male 109/5 83.5% (83.3%, 85.7%, 66.7%, 85.4%, 85.7%)
20 MSc, female 133/5 75.2% (78.6%, 81.8%, 72.7%, 68.6%, 83.3%)
21 PhD, male 117/5 79.5% (71.4%, 66.7%, 75.0%, 86.0%, 83.3%)

In total: 2363/101 77.3% (76.0%, 76.7%, 73.7%, 77.4%, 81.7%)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
As such, upon the remaining 2363 instances for experiments, we
set with the default hit distance limit of one (i.e., only TIDY recom-
mending the exact 𝑜𝑝𝑥+1 achieves ‘‘hit’’), slot limit of 10, and tolerance
ize of one as mentioned before in Section 5.2.2, TIDY’s hit rate for
ll participants is 77.3% on average (range: 67.4–83.5%), concerning
veraged hit rates of 76.0% (range: 57.6–85.7%), 76.7% (range: 63.6–
7.5%), 73.7% (range: 63.6–84.6%), 77.4% (range: 61.9–86.0%), and
1.7% (range: 66.7–88.2%) for each task, respectively.

As a summary, in answering RQ1, our experimental results suggest
IDY’s promising effectiveness on its wise next-operation recommen-
ation by its default setting, and its effectiveness generally holds for
ifferent concerned tasks and participants with little variance.

.3.2. RQ2: Factors
We next study how different settings for the hit distance limit, slot

imit and tolerance sizes affect TIDY’s effectiveness, and how its effec-
tiveness varies with different prioritized goals, tasks and participants.

Hit distance limit. As mentioned earlier, a hit distance limit
is designed for restricting how far TIDY’s recommended operations
appearing in a follow-up sequence can be still regard as ‘‘hit’’. Let
a history sequence be 𝑜𝑝1, 𝑜𝑝2,… , 𝑜𝑝𝑥, and its follow-up sequence
be 𝑜𝑝𝑥+1, 𝑜𝑝𝑥+2,… , 𝑜𝑝𝑛. When a hit distance limit is set to 𝑘, then
only TIDY’s recommended operations matching any operation between
𝑜𝑝𝑥+1,… , 𝑜𝑝𝑥+𝑘 can be regard as ‘‘hit’’. We next investigate how dif-
ferent settings for the hit distance limit affect TIDY’s effectiveness
concerning its hit rate.

Fig. 5 shows how TIDY’s hit rate changes with the increasing
hit distance limit. Note that, to avoid the confusion and bias, when
calculating the corresponding hit rates for a certain hit distance limit
𝑘, we only take those instances whose follow-up sequences have no
less than 𝑘 operations. That is, when calculating hit rates for different
hit distance limits, the figures refer to different sets of instances. This
explains why the hit rate might decreases in Fig. 5 when the hit distance
limit increases. From the figure, we can observe that, with the increase
of the distance limit, there is an obvious increase at first (until around
eleven), and then becomes steady gradually. This suggests: (1) with the
distance limit relaxed a little bit, hit rates can be increased to some
extent since more cases are likely to be regarded as ‘‘hit’’, and (2) such
increasing trend no longer continues when the distance limit reaches
a certain value, since a user intention is typically not associated with
too many user operations in a large scope and its increasing trend will
converge when the distance limit already reaches the end of the user

intention’s associated operations.
Slot limit. As mentioned earlier, the slot limit is designed for
controlling how many next-operations TIDY can recommend for each
specific goal. Since TIDY recommends its next-operations with priori-
tization, we choose to control different slot limits to further evaluate
how its prioritization treatment contributes to its recommendation
and how effective its recommended next-operations with the highest
prioritization are. When the slot limit is set to be 𝑘, TIDY is restricted
to have only 𝑘 options for next-operation recommendation for each
analyzed user intention, and therefore we can accordingly calculate the
corresponding hit rate, i.e., top-𝑘 hit rate.

Fig. 6 shows the hit rates for different slot limits. From the figure,
we can observe that: (1) with an increasing slot limit, TIDY achieves
a higher hit rate, which increases rapidly at first and becomes steady
quickly; (2) TIDY’s effectiveness holds for different slot limits with the
top-3 hit rate being 60.8%, top-5 hit rate being 73.2%, and top-10
hit rate being 77.3%; (3) hit rates become relatively steady when 𝑘
is more than ten, suggesting TIDY’s top ten prioritized next-operations
recommendation are already most effective in practice; (4) although
TIDY’s top-1 hit rate is relatively low, it can increase largely when
the slot limit is relaxed a little bit to two or three. As such, those
observations can promisingly suggest the advantages and effectiveness
of TIDY’s prioritization treatment on recommended next-operations.
When further balancing different slot limit settings, their corresponding
difficulties for users to choose recommendations, and finally achieved
hit rates, we suggest a suitable slot limit to be 10, since it is still
relatively easy for users to quickly scan and choose recommendations
and also brings acceptable effectiveness (hit rate of 77.3%). Still, to
keep our investigation in the experiments complete, we preserve its
maximum value of 20 when investigating this factor’s impact on TIDY’s
effectiveness.

Tolerance size. Fig. 7 shows how different tolerance sizes would
affect TIDY’s effectiveness. We investigate hit rates of instances when
controlling different tolerance sizes in implementing TIDY. From the
figure, we can obverse that: (1) TIDY’s hit rates can be slightly in-
creased by such tolerating treatments, showing that such tolerating
treatment can indeed alleviate the problem of unrelated operations
occurring unexpectedly at the middle of practical sequences; (2) TIDY’s
hit rates reach to the highest when the tolerance size is set to 2, and
the rates slightly decrease after that. Note that we observe that such
improvement exists but is not large in our experiments. This could
attribute to two facts: (1) the collected sequences for experiments were
not that noisy, (2) the tolerance treatment can help alleviate on this
issue.

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
Fig. 5. Averaged hit rates with different hit distance limits.
Fig. 6. Averaged hit rates with different slot limits.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

a 26
i 27
o 28
p 29
d 30

31
i 32
g 33
B 34
Fig. 7. Averaged hit rates with different tolerance sizes in TIDY.

Fig. 8. Averaged hit rates on the top fifth prioritized goals.

Goal prioritization. During TIDY’s analysis upon a given history
sequence, it may identify different user intentions with prioritization.
To study whether TIDY’s prioritization of different identified user in-
tentions is reasonable, we individually calculated corresponding hit
rates on the identified user intentions with a prioritization ranking
from one to five. Results are shown in Fig. 8. We can observe that,
TIDY can effectively identify the user intention with highest hit rates
(71.6%) as the highest prioritized intention, and when TIDY’s identified
goal prioritization decreases, the corresponding hit rate decreases as
expected. This not only suggests the effectiveness of TIDY’s identified
 c
Fig. 9. Averaged hit rates of instances from different tasks.

user intentions, but also indicates that the rational of its goal prior-
itization treatment is reasonable and effective. Moreover, since the
hit rate of TIDY’s top-1 user intentions already reaches a satisfactory
value of 71.6%, this also suggests an alternative for TIDY to prune
unnecessary user intentions during its analyses without affecting its
overall effectiveness.

Task. To investigate how different task designs may affect TIDY’s
effectiveness, we look into hit rates of instances from each individual
task. Fig. 9 shows hit rates results of instances from different tasks.
We can observe that: (1) for all the five tasks, TIDY’s hit rates are
consistently promising (ranging from 73.7–81.7%); (2) hit rates for
different tasks are generally stable, with small variance less than 10%.
This suggests TIDY’s general and stable effectiveness across different
tasks.

Participant. To further investigate how different participant char-
cteristics may affect TIDY’s effectiveness, we investigate hit rates of
nstances from each different category of participant characteristics like
ccupation and gender. Fig. 10 show hit rates results of instances from
articipants with different occupations and genders, respectively. More
etailed hit rates for individual participant can be found in Table 4.

We can observe that TIDY’s hit rates of instances from participants
ndividually (Table 4), or participants with certain occupations and
enders (Fig. 10) are generally stable, with only slight differences.
y further examining each participant’s recorded screen videos during
ompleting tasks, we observe that such slight differences on hit rates
 35

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47

48

49
e 50
p 51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75

76
h 77
i 78

6 79

80
c 81
w 82
w 83

84
i 85
f 86
i 87
T 88
e 89
p 90
i 91
w 92
u 93
o 94
h 95
w 96
t 97
i 98
T 99
P 100
c 101
Fig. 10. Averaged hit rates for participants with different occupations and genders.

Table 5
TIDY’s averaged time overhead per instance.

Task Averaged time overhead (ms)

1 16.2
2 2.7
3 8.0
4 4.1
5 5.0

Total : 7.2

might be due to participants’ different editing habits. For example,
when completing task 1 (i.e., arranging all rectangle shapes to three
horizontal rows by color and make rectangles in the same row bottom-
aligned), participant #6 first roughly arranged the rectangles in three
rows according to their colors, and then carefully aligned them to-
gether. On the other hand, participant #16 added some unnecessary
operations to make shapes to be aligned vertically, even though the
task does not require that. Such habit differences among participants
might somehow explain the variance among their corresponding hit
rates in Table 4. Moreover, frankly speaking, we actually observed that
undergraduate students were more willing to complete tasks according
to instructions step by step, while other participants tended to scan
tasks at first and then edit without following instructions rigorously.
This may explain why ‘‘UG’’ participants achieves the highest hit rate in
Fig. 10. Generally, different occupations and genders had bought only
marginal variance to TIDY’s effectiveness, and this also suggests TIDY’s
stable effectiveness across different participants.

As a summary, by investigating into different factors that might
affect TIDY’s effectiveness, we observe that TIDY’s effectiveness con-
sistently holds concerning different factors. When the hit distance
limit and slot limit increase, its effectiveness of hit rates increases
accordingly at first and quickly becomes stable with little variance.

5.3.3. RQ3: Overhead
We measured the time overhead when applying TIDY to making

next-operation recommendations for all collected 2363 instances and
calculated the averaged time overhead per instance for different tasks.

As shown in Table 5, TIDY took only 7.2 ms on average to make
recommendations for per instance, suggesting its great efficiency (over-
head negligible). Besides, we do observe that TIDY’s time overheads
varies among different tasks. For example, in Table 5, instances of task
1 took the largest averaged time overhead, i.e., 16.2 ms, larger than
those of the other four tasks’ instances on average, i.e., 2.7–8.0 ms. We
looked into its underlying reason, and figured out that this is mainly
because task 1 actually involves plenty of user operations concerning
location-related attributes (e.g., i.e., Left and Top), which are associated
with much more parameterized goals in the designed goal library in
Table 2, compared to other attributes, e.g., coloring attributes like
EntryEffect or LineRGB corresponding to only one parameterized goal.
This naturally brings different complexities to TIDY’s calculation and
analysis, and explains its relatively larger time overhead on task 1. Even
so, we still consider TIDY’s time overhead marginal by costing only tens

of milliseconds per instance. n
As a summary, we believe that TIDY is very efficient by only
costing time overheads from several to several tens of milliseconds
per instance, and such overhead is clearly acceptable at runtime, not
compromising its promising effectiveness observed in answering RQ1
and RQ2.

5.4. Threats to validity

One may concern that the evaluation in TIDY’s application to Pow-
rPoint may not be generalized to other rich-formatted document ap-
lications. We alleviate this threat as follows. First, our TIDY approach

is proposed and designed independently of PowerPoint. All concepts
inside the approach, such as entities, operations, and goals, can be
easily generalized to other rich-formatted document applications. The
only domain-specific structure is the hierarchy structure used in calcu-
lation, and it can be replaced by other accessible structures in many
fields including rich-formatted documents. Second, our selected ap-
plication PowerPoint is one of the most popular and commonly used
rich-formatted applications. We believe that applying TIDY to and
evaluating it on PowerPoint is representative.

Besides, one may also concern that our invited participants and
designed tasks may not be representative of common PowerPoint users
and tasks. In our participant selection, we tried our best to invite more
participant types with diverse characteristics such as occupation, and
gender. Moreover, in order to avoid experimental biases, we also make
sure all participants to be unaware of our TIDY approach and they
were restricted to complete all tasks individually, without any influence
from other researchers or participants. In our task design, we designed
our tasks by adapting popular examples on PowerPoint’s online fo-
rums [16], which cover diverse PowerPoint popular functionalities and
objects in PowerPoint (e.g., shapes, textboxes, art words, pictures, etc.).
Also, our task design allows some degree of freedom for participants in
order to better investigate TIDY’s general effectiveness to unexpected
situations.

6. Discussion

In this section, we discuss some issues regarding TIDY’s usage in
andling challenging sequences in practical scenarios, and its general-
zation ability to more rich-formatted documents.

.1. Handling challenging sequences in practical scenarios

Regarding challenging sequences in practice, we emphasize on three
ases: (1) sequences with only extremely few operations, (2) sequences
ith disturbance by unexpected operations in the middle, (3) sequences
ith complex intentions.

Considering that users may only provide extremely few examples
n history, this brings challenges to not only TIDY, but also all work
or operation recommendations. Still, we believe that with the aid of
ts domain-specific goal library for modeling common user intentions,
IDY can restrict the search space, and make its recommendations
ffectively even with only few examples in practice. To further alleviate
ossible concerns about this case, we additionally provide some exper-
mental data here for a better explanation. In our experiments, when
e partitioned instances according to the number of related operations
nder consideration concerning each recommendation (i.e., the number
f seed entities for the highest prioritized intentions), the corresponding
it rates for TIDY’s effectiveness are 63.3%, 84.6%, 84.6%, and 79.0%
hen using only 1, 2, 3, and 4 operations, respectively. We observe

hat when only one example is provided, TIDY’s effective on hit rate
s 63.3%, seemingly not high but actually already surprisingly high.
he reason is that only one example is somewhat a disaster for any
BE work that aims to make a useful recommendation (one example
an be interpreted in any way). TIDY’s effectiveness for these few

umbers of examples should attribute to it goal library modeling, as 102

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

i18
a19
a20
e21
s22
l23
e24
m25
b26
a27
r28
i29

30

31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68

69

70
t 71
P 72
w 73
p 74
l 75
f 76
i 77
a 78
i 79

80
t 81
b 82
a 83
t 84
P 85
t 86
h 87
i 88
a 89
u 90
g 91
t 92
i 93
s 94
c 95
t 96
p 97

98
t 99
d 100
t 101
a 102
c 103
e 104
d 105
u 106
g 107

108
a 109
p 110
c 111
f 112
w 113
c 114
h 115
u 116

117
p 118
t 119
e 120
P 121
m 122
a 123
n 124
F 125
f 126
we mentioned earlier. Still, no one can argue that TIDY is able to cope
with any scenario where only one example is available. We can observe
that TIDY’s effectiveness can quickly increase to a satisfactory degree
(around 80% hit rate) when it takes two or three examples. We consider
it practically useful for TIDY’s target scenarios.

Considering that users may possibly not stick to one intention due
to unexpected disturbance (e.g., jumping to some irrelevant actions
unexpectedly), some unexpected operations may occur in the middle of
a collected sequence in practice and somehow make a goals associated
operations non-consecutive, although we believe that noisy operations
tend to be few in a sequence since users typically tend to complete
one task before moving to another, in order to be efficient and free
of disturbance. Still to alleviate possible problems, we adopted a toler-
ance treatment in TIDY to allow few unexpected operations occurring
(as discussed in Section 3.3.1). Our experiments also show that such
tolerance can somewhat contribute to TIDY’s effectiveness.

Moreover, some practical sequences may even arise some complex
ntentions which involve several operations rather than only one for
n entity each time. For example, a user may conduct several actions
s a whole package to different entities one by one, i.e., for each
ntity, first changing its font color to red and then changing its font
ize to 14. This intention is complex and beyond our original goal
ibrary, since it combines several concrete operations, and its goal
xamination may differ from TIDY’s original treatment. Currently, TIDY
ight not support this. Yet we consider that it could be supported

y extending TIDY’s goal library with such ‘‘combined intentions’’ and
ssociating a goal with different combining patterns for next-operation
ecommendations. We leave it to our future work. Note that, even
f TIDY does not support combined intentions currently, TIDY is still

capable of handling many regular entity consistency tasks.

6.2. Generalization to more rich-formatted documents

TIDY is proposed to maintain the entity consistency for rich
-formatted documents. Generally, applying TIDY to a specific type
of rich-formatted documents is as follows: modeling the concerned
attributes (could be diverse), designing a suitable goal library (could
cover common user intentions), and then based on these preparations,
using TIDY accordingly. In this article, we implemented TIDY as a plug-
in module into PowerPoint, a commonly used rich-formatted document
application. Based on it, one could enrich TIDY’s application upon Pow-
erPoint, e.g., considering new intentions like ‘‘unifying entities’ shadow
effects’’. Such application is straightforward, as long as shadow-related
attributes are modeled and used in the goal library.

One could also consider applying TIDY to other types of rich-
formatted documents from scratch. We give a brief example for guid-
ance. For similar presentation-based applications like Prezi, apply-
ing TIDY to them is similar to that to PowerPoint. For other rich-
formatted documents that might be some-what different from Pow-
erPoint, e.g., online drawing sites (which draw diagrams like UML
diagrams and data flow diagrams) or mind mapping modules (em-
bedded in some software applications), TIDY can still be used by a
few adaptations. Generally, TIDY’s key concepts, like ‘‘entity’’, ‘‘opera-
tion’’, and ‘‘goal’’, should be mapped to new elements. For example,
in a diagram-drawing application, one should extract its elements
(e.g., nodes in a mind map, classes in class diagrams, and files in DFD)
as TIDY’s entities with their associated attributes, and model possible
actions relating to these elements as TIDY’s operations (e.g., draw-
ing graphs, lines, or changing coloring, text font, text size, and so
on). Then, one proceeds to build TIDY’s goals upon these elements,
attributes, and actions by digging into users’ popular intentions in
practice. For example, in a UML diagram-drawing application, users
tend to draw an implementation class diagram when there is an inter-
face diagram. This intention can be modeled as a goal of maintaining

the entity consistency between interface and implementation class
diagrams. Based on such goals, TIDY can then recommend related next-
operations like drawing implementation class diagrams for an interface
with no implementation class, or recommend method options for ex-
isting implementation classes by analyzing its corresponding interface
diagram.

7. Related work

This work aims to maintain entity consistency and relates the most
o existing research on PBE work. As a sub-field of program synthesis,
BE aims to synthesize an intended program based on given examples,
hich are supposed to be representative. It is quite unlike traditional
rogram synthesis, which requires specifications usually described by
ogical formulas [17–19]. PBE techniques have been widely proposed
or applications in many fields [20–22], e.g., repeating structured draw-
ng [23], remodeling [24,25], spreadsheets [4,8], file management [9],
nd data parsing and extraction [3,26]. There could be two main lines
n the PBE field, i.e., data transformation and code transformation.
Data transformation. This line of PBE work aims to automatically

ransform data from its original format into another format that can
e better analyzed and visualized. There are challenges because the
nalyzed data can be restricted by various types of documents, such as
ext files, PDF documents, HTML documents, and spreadsheets. Without
BE work, it was estimated that data scientists have to spend 80% of
heir time on doing data transformation [27], while PBE can effectively
elp to conduct data transformation [28–30]. For example, a built-
n feature in MS Excel, FlashFill [4,7], is a typical PBE-based tool for
utomatically performing string conversions for cells in Excel files. By
sing provided examples of input–output string cells, it automatically
enerates programs to perform string conversions as expected. FlashEx-
ract [3], delivered in Windows 10 as convertFrom-String cmdlets,
s also another popular PBE-based tool which can extract data from
emi-structured documents, such as HTML documents and text files. It
an successfully produce programs to collect all samples of a field in
he output data schema with negative/positive instances of that field
rovided by users.
Code transformation. This line of PBE work aims to perform au-

omatic code conversions, since it is observed that around 40% of
evelopers’ energy was spent on executing repeated modifications to
he application code, which is resource-wasting. PBE can be a great
ssistance to this field [31,32], to improve the performance of the code
onversions. For example, as the internal Linux libraries continue to
volve, Andersen et al. [33,34] proposed a method to help Linux device
rivers update by PBE. It focuses on changes about API usages and
ses a few examples to infer such a synthesized program, in order to
enerate common patches and automatically apply them to other files.

Compared to existing PBE work, our TIDY approach indeed presents
PBE-based framework, without having to concretely synthesize a

rogram. It aims to support smart transformations to maintain entity
onsistency for rich-formatted documents, which has not been well
ocused in the PBE research. As far as we know, although some existing
ork similarly aims to synthesize a transformer to maintain entity

onsistency [3,4,9] and handle entity relations [35–38]. They can
ardly be applied to rich-formatted documents like PowerPoint, which
sually includes few examples for program synthesis.

The closest work could be the one by Raza et al. [10], which
roposed to synthesize a PBE-based program for handling structural
ransformations in rich-formatted documents with least general gen-
ralizations, and has implemented a plug-in module FlashFormat into
owerPoint. TIDY differs from this work. Unlike TIDY, which actively
onitors users’ operations at runtime and makes recommendations

ccordingly, FlashFormat calls for explicit invocation whenever users
eed assistance. This makes a fair comparison between TIDY and Flash-
ormat difficult, since it would rely highly on the provided examples
or generating the two tools’ internal artifacts (e.g., programs, models,

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63

64

65
66
67

68

69
70
71
72

73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
etc.) for follow-up recommendations, and the quality of these examples
would be subject to how they are collected in different environments.

Blue-Pencil [39] is another piece of related work close to ours,
which aims to identify qualified input–output examples through the
user-editing history and make editing suggestions in practice. TIDY also
differs from this work. First, TIDY and Blue-Pencil have different target
applications. Although Blue-Pencil is proposed as a domain-agnostic
approach, it emphasizes mostly on textual documents, such as C#, SQL,
Markdown programs/documents, and spreadsheets. While our TIDY
focuses on rich-formatted documents with explicit graphical interfaces,
which significantly differ from textual documents. Second, after Blue-
Pencil identifies suitable examples from multiple document versions, it
would then invoke existing PBE engines to generate programs for later
recommendation. In this sense, Blue-Pencil is more like an approach for
example identification to be integrated with other PBE tools. Since we
did not find available PBE engines for integrating with Blue-Pencil, a
direct comparison between TIDY and Blue-Pencil for our targeted entity
consistency tasks in rich-formatted documents can be infeasible. Third,
Blue-Pencil makes efforts in proper example identification for later PBE
by analyzing different versions of textual documents, for the reason
that in textual documents, user intentions are typically vague and
hidden. For rich-formatted documents (e.g., PowerPoint pages), they
typically carry clear user intentions (although not explicitly presented),
and thus TIDY makes attempts to dig them out by modeling common
user intentions in its kernel goal library and conducting runtime goal
matching. This approach can be more natural and suitable.

A typical feedback-driven process in the PBE field [40], usually
refers to that synthesized PBE-based programs can be refined by feeding
more additional inputs. TIDY somehow inherits a slightly different
feedback-driven idea in its goal matching and selection, referring to
TIDY’s ability of gradually figuring out the exact user intention in ana-
lyzing more user operations. On one hand, TIDY may suggest multiple
goals for matching when analyzing some user operations, and then
when collecting more operations, TIDY would gradually generate more
concrete goals for its next-operation recommendations. On the other
hand, TIDY’s goals for matching can be restricted back to one when
its user clicks any of TIDY’s recommended operations, indicating that
the user has chosen to accept one specific goal. This makes TIDY’s
goal-matching continuously evolves according to its analyzed user
operations and user’s actions at runtime.

8. Conclusion

In this paper, we propose TIDY, a two-stage PBE-based framework,
to assist automated entity transformations for their layout and style
consistency in rich-formatted documents like PowerPoint, in a way
adaptive to entity contexts and flexible with user selections. By ex-
amining entities’ operation histories, it can automatically identify user
intentions behind histories and make wise next-operation recommen-
dations for users accordingly. Our experimental results show TIDY’s
effectiveness on both its stably promising hit rate (77.3% on average)
and its marginal time overhead (7.2 ms on average).

There are still limitations in our work. For example, our goal library
design has not covered all possible user intentions in practice and
requires further extensions in future. TIDY’s generalization for specific
rich-formatted applications might need extra efforts. Our future work
will focus on how to model more realistic user’s intentions into TIDY’s
goal library, and apply it to more popular rich-formatted document
applications.

CRediT authorship contribution statement

Shuguan Liu: Conceptualization, Methodology, Software, Writing
- original draft, Investigation, Data curation. Huiyan Wang: Investi-
gation, Validation, Writing - reviewing & editing. Chang Xu: Writing
- reviewing & editing, Supervision, Project administration, Funding
acquisition.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the editor and anonymous reviewers for their constructive
suggestions. This work is supported by the National Natural Science
Foundation of China (61932021, 61690204) and the Collaborative
Innovation Center of Novel Software Technology and Industrialization.

References

[1] S. Gulwani, Programming by examples - and its applications in data wrangling,
in: J. Esparza, O. Grumberg, S. Sickert (Eds.), Dependable Software Systems
Engineering, in: NATO Science for Peace and Security Series - D: Information
and Communication Security, vol. 45, IOS Press, 2016, pp. 137–158, http:
//dx.doi.org/10.3233/978-1-61499-627-9-137.

[2] S. Gulwani, O. Polozov, R. Singh, Program synthesis, Found. Trends Program.
Lang. 4 (1–2) (2017) 1–119, http://dx.doi.org/10.1561/2500000010.

[3] V. Le, S. Gulwani, Flashextract: a framework for data extraction by examples,
in: M.F.P. O’Boyle, K. Pingali (Eds.), ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014, ACM, 2014, pp. 542–553, http://dx.doi.org/10.1145/
2594291.2594333.

[4] S. Gulwani, Automating string processing in spreadsheets using input-output
examples, in: T. Ball, M. Sagiv (Eds.), Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011, ACM, 2011, pp. 317–330, http://dx.doi.
org/10.1145/1926385.1926423.

[5] R. Singh, S. Gulwani, Learning semantic string transformations from examples,
Proc. VLDB Endow. 5 (8) (2012) 740–751, http://dx.doi.org/10.14778/2212351.
2212356.

[6] I. Drosos, T. Barik, P.J. Guo, R. DeLine, S. Gulwani, Wrex: A unified
programming-by-example interaction for synthesizing readable code for data
scientists, in: R. Bernhaupt, F.F. Mueller, D. Verweij, J. Andres, J. McGrenere,
A. Cockburn, I. Avellino, A. Goguey, P. Bjøn, S. Zhao, B.P. Samson, R. Kocielnik
(Eds.), CHI ’20: CHI Conference on Human Factors in Computing Systems,
Honolulu, HI, USA, April 25-30, 2020, ACM, 2020, pp. 1–12, http://dx.doi.org/
10.1145/3313831.3376442.

[7] R. Singh, S. Gulwani, Predicting a correct program in programming by example,
in: D. Kroening, C.S. Pasareanu (Eds.), Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 9206, Springer,
2015, pp. 398–414, http://dx.doi.org/10.1007/978-3-319-21690-4_23.

[8] R. Singh, S.G. 2016., Transforming spreadsheet data types using examples, ACM
SIGPLAN Not. 51 (1) (2016) 343–356.

[9] N. Yaghmazadeh, C. Klinger, I. Dillig, S. Chaudhuri, Synthesizing transformations
on hierarchically structured data, in: C. Krintz, E. Berger (Eds.), Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, ACM,
2016, pp. 508–521, http://dx.doi.org/10.1145/2908080.2908088.

[10] M. Raza, S. Gulwani, N. Milic-Frayling, Programming by example using least
general generalizations, in: C.E. Brodley, P. Stone (Eds.), Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
QuÉBec City, QuÉBec, Canada, AAAI Press, 2014, pp. 283–290.

[11] R. Bhatia, Matrix Analysis, Springer, Berlin, 1996.
[12] T.Y. Tso, S. Tweedie, Planned extensions to the linux ext2/ext3 filesystem, 2002,

pp. 235–243.
[13] M. Ceci, D. Malerba, Hierarchical classification of HTML documents with

webclassii, 2003, pp. 57–72.
[14] PPT Object-model, https://docs.microsoft.com/en-us/office/vba/api/overview/

powerpoint/object-model.
[15] D. Gossot, Y. Miaux, A. Guermazi, M. Celerier, J. Frija, The hook-wire technique

for localization of pulmonary nodules during thoracoscopic resection, Chest 105
(5) (1994) 1467–1469.

[16] MS Office Forum, https://www.msofficeforums.com/.
[17] S. Srivastava, S. Gulwani, J.S. Foster, From program verification to program

synthesis, in: M.V. Hermenegildo, J. Palsberg (Eds.), Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, ACM, 2010, pp. 313–326,
http://dx.doi.org/10.1145/1706299.1706337.

http://dx.doi.org/10.3233/978-1-61499-627-9-137
http://dx.doi.org/10.3233/978-1-61499-627-9-137
http://dx.doi.org/10.3233/978-1-61499-627-9-137
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1145/2594291.2594333
http://dx.doi.org/10.1145/2594291.2594333
http://dx.doi.org/10.1145/2594291.2594333
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.1145/3313831.3376442
http://dx.doi.org/10.1145/3313831.3376442
http://dx.doi.org/10.1145/3313831.3376442
http://dx.doi.org/10.1007/978-3-319-21690-4_23
http://dx.doi.org/10.1145/2908080.2908088
https://docs.microsoft.com/en-us/office/vba/api/overview/powerpoint/object-model
https://docs.microsoft.com/en-us/office/vba/api/overview/powerpoint/object-model
https://docs.microsoft.com/en-us/office/vba/api/overview/powerpoint/object-model
https://www.msofficeforums.com/
http://dx.doi.org/10.1145/1706299.1706337

S. Liu et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
[18] S. Itzhaky, S. Gulwani, N. Immerman, M. Sagiv, A simple inductive synthesis
methodology and its applications, in: W.R. Cook, S. Clarke, M.C. Rinard (Eds.),
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, October 17-
21, 2010, Reno/Tahoe, Nevada, USA, ACM, 2010, pp. 36–46, http://dx.doi.org/
10.1145/1869459.1869463.

[19] S. Gulwani, S. Jha, A. Tiwari, R. Venkatesan, Synthesis of loop-free programs, in:
M.W. Hall, D.A. Padua (Eds.), Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose,
CA, USA, June 4-8, 2011, ACM, 2011, pp. 62–73, http://dx.doi.org/10.1145/
1993498.1993506.

[20] R.E. Brooks, ‘‘Watch what i do: Programming by demonstration, ’’ edited by allen
cypher (book review), Int. J. Man-Mach. Stud. 39 (6) (1993) 1051–1057.

[21] H. Lieberman (Ed.), Your Wish is My Command, in: The Morgan Kaufmann
Series in Interactive Technologies, Morgan Kaufmann / Elsevier, 2001, http:
//dx.doi.org/10.1016/b978-1-55860-688-3.x5000-3.

[22] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, L. Novik, Discovering queries
based on example tuples, in: C.E. Dyreson, F. Li, M.T. Özsu (Eds.), International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, ACM, 2014, pp. 493–504, http://dx.doi.org/10.1145/2588555.
2593664.

[23] S. Cheema, S. Buchanan, S. Gulwani, J.J.L. Jr., A practical framework for
constructing structured drawings, in: T. Kuflik, O. Stock, J.Y. Chai, A. Krüger
(Eds.), 19th International Conference on Intelligent User Interfaces, IUI 2014,
Haifa, Israel, February 24-27, 2014, ACM, 2014, pp. 311–316, http://dx.doi.
org/10.1145/2557500.2557522.

[24] N. Meng, M. Kim, K.S. McKinley, LASE: locating and applying systematic edits
by learning from examples, in: D. Notkin, B.H.C. Cheng, K. Pohl (Eds.), 35th
International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013, IEEE Computer Society, 2013, pp. 502–511, http:
//dx.doi.org/10.1109/ICSE.2013.6606596.

[25] J. Jacobellis, N. Meng, M. Kim, LASE: an example-based program transformation
tool for locating and applying systematic edits, in: D. Notkin, B.H.C. Cheng, K.
Pohl (Eds.), 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, IEEE Computer Society, 2013, pp.
1319–1322, http://dx.doi.org/10.1109/ICSE.2013.6606707.

[26] A. Leung, J. Sarracino, S. Lerner, Interactive parser synthesis by example, in: D.
Grove, S. Blackburn (Eds.), Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, ACM, 2015, pp. 565–574, http://dx.doi.org/10.1145/2737924.
2738002.

[27] S. Gulwani, P. Jain, Programming by examples: PL meets ML, in: B.E. Chang
(Ed.), Programming Languages and Systems - 15th Asian Symposium, APLAS
2017, Suzhou, China, November 27-29, 2017, Proceedings, in: Lecture Notes in
Computer Science, vol. 10695, Springer, 2017, pp. 3–20, http://dx.doi.org/10.
1007/978-3-319-71237-6_1.

[28] D.W. Barowy, S. Gulwani, T. Hart, B.G. Zorn, Flashrelate: extracting relational
data from semi-structured spreadsheets using examples, in: D. Grove, S. Black-
burn (Eds.), Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015,
ACM, 2015, pp. 218–228, http://dx.doi.org/10.1145/2737924.2737952.
[29] S. Gulwani, W.R. Harris, R. Singh, Spreadsheet data manipulation using exam-
ples, Commun. ACM 55 (8) (2012) 97–105, http://dx.doi.org/10.1145/2240236.
2240260.

[30] S. Gulwani, M. Marron, Nlyze: interactive programming by natural language
for spreadsheet data analysis and manipulation, in: C.E. Dyreson, F. Li, M.T.
Özsu (Eds.), International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, ACM, 2014, pp. 803–814, http://dx.doi.
org/10.1145/2588555.2612177.

[31] R.R. de Sousa, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.
Suzuki, B. Hartmann, Learning syntactic program transformations from examples,
2016, CoRR abs/1608.09000. arXiv:1608.09000.

[32] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki,
B. Hartmann, Learning syntactic program transformations from examples, in: S.
Uchitel, A. Orso, M.P. Robillard (Eds.), Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, IEEE / ACM, 2017, pp. 404–415, http://dx.doi.org/10.1109/ICSE.
2017.44.

[33] J. Andersen, J.L. Lawall, Generic patch inference, in: 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2008), 15-19
September 2008, L’Aquila, Italy, IEEE Computer Society, 2008, pp. 337–346,
http://dx.doi.org/10.1109/ASE.2008.44.

[34] J. Andersen, J.L. Lawall, Generic patch inference, Autom. Softw. Eng. 17 (2)
(2010) 119–148, http://dx.doi.org/10.1007/s10515-010-0062-z.

[35] J. Wu, Y. Jiang, C. Xu, S. Cheung, X. Ma, J. Lu, Synthesizing relation-aware
entity transformation by examples, in: M. Chaudron, I. Crnkovic, M. Chechik,
M. Harman (Eds.), Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27
- June 03, 2018, ACM, 2018, pp. 266–267, http://dx.doi.org/10.1145/3183440.
3194963.

[36] S. Zhang, Y. Sun, Automatically synthesizing SQL queries from input-output
examples, in: E. Denney, T. Bultan, A. Zeller (Eds.), 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, IEEE, 2013, pp. 224–234, http://dx.
doi.org/10.1109/ASE.2013.6693082.

[37] C. Wang, A. Cheung, R. Bodík, Synthesizing highly expressive SQL queries
from input-output examples, in: A. Cohen, M.T. Vechev (Eds.), Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, ACM, 2017,
pp. 452–466, http://dx.doi.org/10.1145/3062341.3062365.

[38] A. Abouzied, D. Angluin, C.H. Papadimitriou, J.M. Hellerstein, A. Silberschatz,
Learning and verifying quantified boolean queries by example, in: R. Hull, W.
Fan (Eds.), Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 -
27, 2013, ACM, 2013, pp. 49–60, http://dx.doi.org/10.1145/2463664.2465220.

[39] A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari,
A. Udupa, On the fly synthesis of edit suggestions, Proc. ACM Program. Lang. 3
(OOPSLA) (2019) 143:1–143:29, http://dx.doi.org/10.1145/3360569.

[40] X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N.
Nagappan, A. Tiwari, Feedback-driven semi-supervised synthesis of program
transformations, Proc. ACM Program. Lang. 4 (OOPSLA) (2020) 219:1–219:30,
http://dx.doi.org/10.1145/3428287.

http://dx.doi.org/10.1145/1869459.1869463
http://dx.doi.org/10.1145/1869459.1869463
http://dx.doi.org/10.1145/1869459.1869463
http://dx.doi.org/10.1145/1993498.1993506
http://dx.doi.org/10.1145/1993498.1993506
http://dx.doi.org/10.1145/1993498.1993506
http://dx.doi.org/10.1016/b978-1-55860-688-3.x5000-3
http://dx.doi.org/10.1016/b978-1-55860-688-3.x5000-3
http://dx.doi.org/10.1016/b978-1-55860-688-3.x5000-3
http://dx.doi.org/10.1145/2588555.2593664
http://dx.doi.org/10.1145/2588555.2593664
http://dx.doi.org/10.1145/2588555.2593664
http://dx.doi.org/10.1145/2557500.2557522
http://dx.doi.org/10.1145/2557500.2557522
http://dx.doi.org/10.1145/2557500.2557522
http://dx.doi.org/10.1109/ICSE.2013.6606596
http://dx.doi.org/10.1109/ICSE.2013.6606596
http://dx.doi.org/10.1109/ICSE.2013.6606596
http://dx.doi.org/10.1109/ICSE.2013.6606707
http://dx.doi.org/10.1145/2737924.2738002
http://dx.doi.org/10.1145/2737924.2738002
http://dx.doi.org/10.1145/2737924.2738002
http://dx.doi.org/10.1007/978-3-319-71237-6_1
http://dx.doi.org/10.1007/978-3-319-71237-6_1
http://dx.doi.org/10.1007/978-3-319-71237-6_1
http://dx.doi.org/10.1145/2737924.2737952
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/2588555.2612177
http://dx.doi.org/10.1145/2588555.2612177
http://dx.doi.org/10.1145/2588555.2612177
http://arxiv.org/abs/1608.09000
http://arxiv.org/abs/1608.09000
http://dx.doi.org/10.1109/ICSE.2017.44
http://dx.doi.org/10.1109/ICSE.2017.44
http://dx.doi.org/10.1109/ICSE.2017.44
http://dx.doi.org/10.1109/ASE.2008.44
http://dx.doi.org/10.1007/s10515-010-0062-z
http://dx.doi.org/10.1145/3183440.3194963
http://dx.doi.org/10.1145/3183440.3194963
http://dx.doi.org/10.1145/3183440.3194963
http://dx.doi.org/10.1109/ASE.2013.6693082
http://dx.doi.org/10.1109/ASE.2013.6693082
http://dx.doi.org/10.1109/ASE.2013.6693082
http://dx.doi.org/10.1145/3062341.3062365
http://dx.doi.org/10.1145/2463664.2465220
http://dx.doi.org/10.1145/3360569
http://dx.doi.org/10.1145/3428287

	TIDY: A PBE-based framework supporting smart transformations for entity consistency in PowerPoint
	Introduction
	Background
	PBE background
	Motivating example

	Methodology
	Overview
	Notations and definitions
	Stage 1: User intention identification
	Step 1: Parameterized goal selection
	Step 2: Instantial goal generation

	Stage 2: Next-operation recommendation
	Step 1: Entity selection and prioritization
	Step 2: Next-operation generation and prioritization

	TIDY's application to PowerPoint
	Goal library design
	Powerpoint object hierarchy
	Prototype toolkit details

	Evaluation
	Research questions
	Experimental design and setup
	Experimental preparation
	Experimental setup

	Experimental results and analyses
	RQ1: Effectiveness
	RQ2: Factors
	RQ3: Overhead

	Threats to validity

	Discussion
	Handling challenging sequences in practical scenarios
	Generalization to more rich-formatted documents

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

