
Chen JC, Qin Y, Wang HY et al. Simulation Might Change Your Results: A Comparison of Context-aware System Input

Validation in Simulated and Physical Environments. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1):

1–29 Month Year. DOI 10.1007/s11390-015-0000-0

Simulation Might Change Your Results: A Comparison of
Context-Aware System Input Validation in Simulated and Physical
Environments

Jin-Chi Chen, Yi Qin∗, Member, CCF, ACM, Hui-Yan Wang, Member, CCF, and Chang Xu, Senior Member,
CCF, IEEE, Member, ACM

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

E-mail: chenjc@smail.nju.edu.cn; {yiqincs, why, changxu}@nju.edu.cn

Received June 1, 2021; accepted Month Day, Year.

Abstract Context-aware systems (a.k.a. CASs) integrate cyber and physical space to provide adaptive functionalities in

response to changes in context. Building context-aware systems is challenging due to the uncertain running environment.

Therefore, many input validation approaches have been proposed to protect context-aware systems from uncertainty and

keep them executing safely. However, in contrast to context-aware systems’ prevailing in physical environments, most of

those academic solutions (83%) are purely evaluated in simulated environments. In this article, we study whether this

evaluation setting could lead to biased conclusions. We build a testing platform, RM-Testing, based on DJI RoboMaster

robot car, to conduct the physical-environment-based experiments. We select three up-to-date input validation approaches,

and compare their performance in the simulated environment and in the physical environment. The experimental results

show that all three approaches’ performance in simulated environments (improving task success rate by 82% compared with

the system without the support of input validation) does differ from their performance in a physical environment (improving

task success rate by 50%). We also recognize three factors that affect the performance of input validation approaches, based

on an execution model of the context-aware system.

Keywords context-aware system, input validation, self-driving car, testing infrastructure

1 Introduction

The vision of Internetware calls a shift of software

paradigm from executing in a static and closed envi-

ronment to executing in a dynamic and open environ-

ment [1]. The developing of context-aware systems

(a.k.a. CASs) echoes that call by integrating cyber

and physical space, and providing adaptive function-

alities in response to changes in context [2, 3]. Among

various variants of “context” and “context-awareness”,

we adopt a software engineering-based perspective of

context [2, 4]. Specifically, context is defined as the

abstract representation of relational expression over

sensed context variables. Thus, context-aware systems

are the systems that continually sense environmental

changes, make decisions based on their preprogrammed

logic, and then take physical actions to adapt to the

sensed changes.

Due to their dynamic running environments,

Regular Paper

Special Section of Software Systems 2021

A preliminary version of the paper was published in the Proceedings of Internetware 2020.

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61932021 and 61902173,
and the Natural Science Foundation of Jiangsu Province under Grant No. BK20190299.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2021



2 J. Comput. Sci. & Technol., Month Year, Vol., No.

context-aware systems are error-prone [2, 5]. Environ-

mental uncertainty is one of the main obstacles to a reli-

able context-aware system. Unlike traditional programs

that take accurate and deterministic inputs, context-

aware systems often suffer from uncertain input that

cannot accurately describe the system’s running en-

vironment. Such uncertain inputs are unpredictable

while developing a context-aware system, potentially

leading to abnormality or failure if not processed ap-

propriately. In fact, uncertain inputs contribute to two

of the most famous accidents of context-aware systems:

the crashing of the Tesla self-driving car, in which the

system failed to recognize a truck due to road reflec-

tions 1○, and the falling of Boeing 737-MAX airplane,

in which the system received an incorrect angle of at-

tack values 2○.

To address the uncertain input issue, many in-

put validation approaches have been proposed to fil-

ter uncertainty from the inputs of a context-aware sys-

tem [6, 7, 8]. These approaches could help developers

to improve the quality of the inputs of context-aware

systems from different perspectives, including detecting

and repairing inconsistent context, recognizing the con-

text from abnormal running scenarios, and validating

the unfitted operational field of deep learning inputs.

However, in contrast to context-aware systems’ success

in the physical world, most of those academic solutions

are evaluated in simulated environments only. Based on

a primitive review of software-engineering-related lit-

erature [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], we

found that only 17% of these studies evaluated their

approaches in physical environments [5, 7], and others

are only evaluated in a simulated environment, i.e., ei-

ther in a simulator [6, 9, 10, 11], or with pre-collected

execution traces of context-aware systems [8, 12, 13,

14, 15, 16]. The above result echoes a recent survey on

context-aware applications, in which the authors [17]

claimed that “(for real-world tests) testers may have to

bear the high cost (e.g., time and money)”. As such,

one could ask two questions that Q1: whether the input

validation approaches’ performance varies in a physical

environment and in a simulated environment, and Q2:

whether and how the differences between a simulated

environment and a physical environment affect the per-

formance of those approaches. The answers to these two

questions could help researchers to better validate the

effectiveness of their proposed approaches, and demon-

strate the usefulness of the approaches.

In this article, we design and conduct an empirical

study to answer the two questions above. To the best

of our knowledge, we are the first to investigate the

evaluation of a CAS-related technique in the simulated

and the physical environment. The conclusion of our

study is summarized as follows: “The performance of

input validation approaches for context-aware systems

in a physical environment does differ from that in a

simulated environment.”

Technically, we design and build a testing platform,

RM-Testing, to connect the simulation-based evalua-

tion with a physical-world-based one. We select the

aforementioned autopilot program of the self-driving

car as our target context-aware service, refit a DJI

RoboMaster S1 robot car with additional range sen-

sors to enrich its sensibility, and build a controller mod-

ule to control the robot car with subject autopilot pro-

grams. We also implement and adapt three input val-

idation approaches, namely ECC [6], CoMID [7], and

DISSECTOR [8], to validate the environmental infor-

mation pushed to the subject autopilot program. Based

on the testing platform, we evaluate three input valida-

0 1○https://www.bbc.com/news/technology-48308852, Sept. 2021.
0 2○http://knkt.dephub.go.id/knkt/ntsc aviation/baru/2018%20-%20035%20-%20PK-LQP%20Final%20Report.pdf, Sept. 2021.



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 3

tion approaches in both the simulated and the physical

environment.

We also analyze the factors that could impact the

system’s interaction with its running environment de-

tailedly based on a conceptual model describing a

context-aware system’s execution in the environment.

We recognize three major factors, namely scenario

setting, environmental model, and physical platform.

Therefore, we build different experimental scenarios of

the urban road network and use different types of Robo-

Masters as the target system’s platforms.

The experimental results show that these ap-

proaches improve the task success rate by 82% com-

pared with the system without the support of input

validation in a simulated environment, and improve

that by 50% in a physical environment. The result

of the study shows that the three recognized factors

have different impacts on the selected input valida-

tion approaches’ performance in different environments,

among which physical platform makes the most signif-

icant influence.

In summary, this article makes the following contri-

butions.

•We build a testing platform, RM-Testing, for eval-

uating input validation approaches with a context-

aware system (DJI RoboMaster S1 robot car) in a

physical environment.

• We analyse the factors that distinguish a simu-

lated environment from a physical environment in

detail, in terms of their interactions with a context-

aware system.

• We conduct experiments in both the simulated

environment and the physical environment to mea-

sure the differences between the input validation

approaches’ performance in a physical environment

and that in a simulated environment. We also in-

vestigate and validate the effect of each recognized

factor that may lead to the differences.

Note. This article significantly extends [18].

Specifically, our major extensions include: an in-depth

analysis of the difference of the interaction between

context-aware systems and their running environment

(in Section 4), and new experiments that investigate

the impact of the recognized differences between a sim-

ulated environment and a physical environment (in Sec-

tion 5). The new experiments not only echo the conclu-

sion in the previous version [18] (i.e., the performance

of the selected approaches in a physical environment

is different from that in a simulated environment), but

also further validate three factors (i.e., scenario setting,

environmental model, and physical platform) that lead

to difference.

The remainder of this article is organized as follows.

Section 2 introduces DJI RoboMaster S1 and three in-

put validation approaches associated with this work.

Section 3 gives an overview of our testing platform for

the context-aware system, and how we adapt the afore-

mentioned approaches in our platform. Section 4 intro-

duces a conceptual model of program-environment in-

teraction, and analyses the environmental factors that

affect such interaction. Section 5 presents an inten-

sive evaluation in investigating the difference between

the simulated and physical environment. Section 6 dis-

cusses related work, and finally Section 7 concludes this

paper.

2 Preliminaries

In this section, we first introduce the background

of autopilot program and DJI RoboMaster S1 robot

car. Then we briefly describe three input validation

approaches for context-aware systems.



4 J. Comput. Sci. & Technol., Month Year, Vol., No.

2.1 Autopilot Program and DJI RoboMaster

S1

An autopilot system typically consists of two parts:

the perception system and the decision-making sys-

tem [19, 20, 21]. The perception system is responsi-

ble for sensing the environment using equipped sensors,

while the decision-making system analyzes the current

state based on the sensed environmental information

and determines the driving routes [20].

As a context-aware system, the autopilot program

of a self-driving car controls the car’s behavior to adapt

to the sensed environmental information. Basically,

the execution of an autopilot program consists of three

steps [20]: 1) sensing the car’s surrounding environment

and receiving environmental information; 2) making de-

cisions on the car’s future route using the pre-defined

driving strategy; 3) controlling the car’s direction and

speed to follow the determined driving route.

RoboMaster S1 is an educational robot car designed

by DJI. It is equipped with four omnidirectional wheels,

which enable the robot car to move towards any direc-

tion and spin around within a small area. The robot is

also equipped with a Wi-Fi module and a first-person-

view (shorted as “FPV”) camera, which enables one

to connect the robot car to a computer and control its

movement from the camera in real time. However, as

an educational robot, RoboMaster S1 has very limited

sensors (only four contact sensors to sense the car’s col-

lision with obstacles) and restricted programming sup-

ports (a scratch-program-based UI with limited APIs).

As a result, we have to refit both its hardware and soft-

ware, in order to build our testing platforms for context-

aware systems.

2.2 Input Validation for Context-Aware Sys-

tems

Context-aware systems leverage environmental in-

formation to provide autonomous and adaptive ser-

vices. However, the uncertainty of environmental in-

formation introduces several challenges towards the

failure-free context-aware systems as follows.

• Inconsistent Context. The noise of sensing

data weakens the system’s ability to understand

the environment [22]. Due to the limitation

of physical measurement, the error is inevitable

during the system’s sensing phases, which could

further affect the decision-making and action-

performing phases, and finally lead the system

into failure [6, 22]. Noisy data may make con-

texts conflict with each other, which is referred

to as the context inconsistency problem [6].

• Uncertain Scenarios. Context-aware systems

often execute in a dynamic and open environ-

ment. Uncertainty is unavoidable in such envi-

ronments that system developers have to make

simplification of the complicated environment. As

a result, context-aware systems facing uncertain

scenarios could have their pre-defined logic failing

in the physical environment [23]. This problem is

referred to as an abnormal state [7].

• Unfitted Operational Field. To improve pro-

ductivity and cope with infinite kinds of envi-

ronmental dynamics, context-aware systems de-

velopers often hold certain assumptions on typ-

ical scenarios [9, 24, 25]. Such certain assump-

tions describe the operational field of a system.

However, the environment might deviate from the

operational field during their actual running and

make the system unreliable. Deep learning (a.k.a.



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 5

DL) approaches are widely used in many context-

aware systems [20, 26]. Its application in context-

aware systems further increases the risk of unfit-

ted operational field, and has been reported by

recent literature [8, 27]. If a DL model’s running

environment and training environment are differ-

ent, the inputs from the running environment may

be out of the scope of the system’s handling capa-

bility, resulting in a reduction in the quality of the

system’s executions[8]. This problem is referred

to as unfitted DL model input [27, 28].

Many research efforts have been made to address

the above challenges. In this work, we focus on three

branches of input validation techniques, namely con-

straints checking, invariant checking, and DL model in-

put pruning. From each of these branches, we select

one approach to study their performance in both the

simulated and the physical environment, with respect

to improving the execution safety of context-aware sys-

tems. The purpose of input validation or pruning is

to alleviate the impact of the deviation between the

sensed readings and the actual values. Such deviation

is produced during the interaction between a context-

aware system and its running environment, not a sys-

tem defect. As a result, an input validation approach

can be treated as an enhancement of the context-aware

system’s original application logic, which improves the

availability and reliability of the system [6, 7, 8]. In the

following part of this subsection, we briefly introduce

the selected input validation techniques.

Constraints checking addresses the context in-

consistency problem by validating contexts [6, 29]. It

helps prevent such inconsistency from being received by

the system. Constraints describe the restrictions on the

relationship between multiple pieces of contexts [30].

In this work, we study the performance of Entire

Constraints Checking (ECC) [6] approach in both the

simulated and the physical environment. We use a con-

straint language based on first-order logic [6] to specify

consistency constraints. The syntax of the constraint

language is as follows:

f ::=∀γ ∈ S(f)|∃γ ∈ S(f)|(f) ∧ (f)|(f) ∨ (f)|

(f)→ (f)|¬(f)|bfunc(γ, . . . , γ)

where bfunc represents a user-defined function. The

parameters of bfunc are context instances and the re-

turn value is a boolean variable.

Invariant checking addresses the abnormal state

problem by automatically generated invariants [7, 31].

Uncertain scenarios introduce unpredictable situation

beyond the capability of pre-defined logics of context-

aware systems. Many systems use assertions to check

whether the systems’ surrounding environments have

entered abnormal states. However, manually specified

assertions can generally only detect obvious failure but

not potential abnormal state.

One promising way to detect potential abnormal

state is to conduct automatically generated invariant

checking in the runtime. Before the system is put into

use, we can automatically generate invariants that the

program should satisfy when it runs normally. The vi-

olation of any invariant means that the system may

enter a failure state soon, and thus the system can take

corresponding repair measures to prevent failure.

Invariant detectors like Daikon [32] achieves great

results in traditional software testing. Some researchers

also proposed invariant generation templates for robotic

systems [33]. In this work, we study the performance

of Context-aware Multi-Invariant Detection (CoMID)

approach [7].

DL model input pruning addresses the unfitted

DL model input problem by validating and pruning in-

puts to the DL model [8]. In recent years, deep learn-

ing approaches have been widely used in many context-

aware systems to assist their recognition of the physical



6 J. Comput. Sci. & Technol., Month Year, Vol., No.

environment [20, 26, 34]. Most of these approaches use

supervised learning. They need to be trained using the

data collected from certain scenarios. As a result, the

system’s input from the running environment may be

out of the model’s capability [8].

In response to this problem, some DL model input

validation approaches for deep learning have been pro-

posed. In this work, we study the performance of DIS-

SECTOR [8] approach in both the simulated and the

physical environments. The main idea of this approach

is to distinguish and prune the inputs that exceed the

model’s handling capability to prevent the data from

being used in the decision-making phase. Since the re-

maining inputs are within the system’s capability, the

system can be more reliable. More specifically, DIS-

SECTOR tracks how the model interprets its input and

generates a PV score to denote the input’s validity. The

value range of PV score is [0,1]. An input is more likely

to be within the capability of the model (i.e., being

valid) if its PV socre is closer to 1.

2.3 Testing in Simulator and Physical World

Despite the seemingly straightforward answers, a

rigorous investigation requires well technical design and

considerable implementation efforts. On one hand,

one has to build a testing infrastructure that runs not

only in a simulator but also in a physical environment.

The testing infrastructure should connect the concerned

program with a physical platform capable of sensing

the surrounding environment and taking physical ac-

tions. As such, the testing infrastructure requires re-

fitting and modifying the physical platforms to enrich

their sensibility and controllability. To support dif-

ferent input validation approaches that may leverage

various program analysis techniques, the infrastructure

should also support recording the execution informa-

tion of the context-aware system.

On the other hand, the investigation requires an

in-depth comparison of a simulated environment and

a physical environment, in terms of their interactions

with context-aware systems. Considering various fac-

tors impacting the program-environment interaction, a

broad comparison might not necessarily reveal the en-

vironments’ differences. For example, a complex en-

vironmental scenario might cause a dramatic increase

of the context-aware system’s abnormal rate in both

two environments [35], which could further narrow the

measured gap between the two environments.

Besides the efforts to design and implement, another

challenge for answering the two questions is to deploy

the concerned input validation approaches on a physical

context-aware system. Different from a cyber labora-

tory environment that is closed and static, the physical

environment is open and dynamic since computation

is moved “off the desktop” [4, 7, 9, 36], which could

make the direct application of the approaches less ef-

fective [4]. For example, DISSECTOR [8], an input val-

idation approach for deep learning applications, drops

inputs under validity threshold directly to achieve bet-

ter accuracy performance [8]. However, when it comes

to a robot car recognizing the road sign by a deep learn-

ing approach, the same strategy can lead to failure if

no image can reach validity. This problem prevents

us from using the original tools proposed by the re-

searchers directly.

3 Testing Platform for Context-Aware System

We build a testing platform, RM-Testing, on DJI

RoboMaster S1. The architecture of the platform is

shown in Fig.1. Basically, the platform connects a

DJI RoboMaster S1 robot car and a subject autopi-

lot program under test. The platform mainly consists

of four modules, namely sense, control, input valida-

tion, and info. The first two modules enable the sub-



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 7

FPV 

Camera

Range 

Sensors

Sensing Input

Robot Control

Log

DJI RoboMaster

S1 Robot Car

(Physical Platform)

Constraints 

Checking

Invariant 

Checking

DL Model Input 

Pruning

Autopilot Program 

(Subject Program)

Input Validation

FPV Controller

Image Distance

Validated Environmental InformationControl InstructionsRM-Testing

DEBUGG/INFO/

WARINING

Info Control

Sense

Fig.1. Architecture of RM-Testing platform [18].

ject program to sense the robot car’s surrounding en-

vironment and control the robot car to move and ro-

tate, respectively. The input validation module imple-

ments three selected input validation approaches, and

provides high-quality environmental information to the

subject program. The info module collects execution

information from all other modules for analyzing the

program’s execution states.

In the following parts of this section, we will first

describe RM-Testing’s sense, control, and info modules

in detail. Then, we will show our implementation of the

concerned input validation approaches (i.e., the input

validation module) on RM-Testing.

3.1 Implementation of RM-Testing

Module sense enables the subject autopilot pro-

gram to acquire environmental information. As dis-

cussed in Section 2 that the RoboMaster S1 is only

equipped with four contact sensors, we refitted the

robot car to enrich its sensibility. We install range sen-

sors in the forward, rear, left, and right of the robot car

to obtain the horizontal distance between the robot car

and other objects. Since RoboMaster S1 does not open

its underlying development board interface and wire-

less network module, we also install an Arduino UNO

3 (and its power supply device) and an ESP8266 WIFI

module for data transmission. The Arduino UNO 3 is

responsible for sending signals to each sensor to trigger

distance measurement, waiting for response signal, and

calculating the current reading based on the time differ-

ence between two signals. The ESP8266 WIFI module

sends the data to a computer in LAN.

Besides the sensors’ data, we also modify the robot

car’s FPV controller to enable the autopilot program to

acquire the FPV camera’s images. The autopilot pro-

gram can use encapsulated approaches to control the

camera to monitor its surrounding environment better.

The raw environmental information, such as sensor

readings and images, is managed by a sensing input

module. This module collects all raw environmental



8 J. Comput. Sci. & Technol., Month Year, Vol., No.

information from the hardware, such as sensors and

the camera, and feeds it to other modules that require

the data. The sensing input module connects providers

(i.e., sensors and a camera) and the consumers (i.e., the

input validation module and the autopilot program) of

environmental information in a pub/sub manner. More

specifically, the hardware that provides environmental

data and the modules that require environmental data

first register their names and related data types in the

sensing input module. Then the sensing input module

would collect the raw data from the providers and push

the collected data to the consumers. This module uses

FIFO queues to store the collected environmental infor-

mation, considering the different producing/consuming

speeds of the data.

3.2 Control in RM-Testing

Module control enables the autopilot program to

control the robot car to move with enriched APIs, com-

pared with the original APIs provided by the Robo-

Master S1 IDE. We implement a robot control module

based on the FPV controller of the robot car. With the

original FPV controller, users can use the keyboard to

move and rotate the robot car. More specifically, press-

ing “W”, “S”, “A”, “D”, “left”, and “right” keys would

control the robot car move forward, back, left, right, ro-

tate counterclockwise, and clockwise, respectively. To

enable the automatic control, we use the pywin32 3○ li-

brary to simulate keyboard actions of the FPV mode,

and encapsulate those simulated keyboard actions as

methods for the autopilot program to invoke as shown

in Fig.2.

(a) (b) (c)

Fig.2. Refitting and control of the car [18]. (a) Before refitting.
(b) After refitting. (c) FPV control.

Module info is a log-recording module that fa-

cilitates program debugging, error location, and data

analysis. It is implemented based on the Python log-

ging library. The execution record of any module in

the platform will be outputed to the log files. We use

three logging levels, including “DEBUG”, “INFO”, and

“WARNING”. The “DEBUG” level concerns the up-

dated information of corresponding variables in RM-

Testing. The “INFO” level describes the pre-defined

events produced by the RM-Testing platform. The

“WARNING” level presents the checking results pro-

duced by the implemented approaches in the input val-

idation module. We implement different levels of logs

for the universality of this platform.

3.3 Input Validation in RM-Testing

Constraints Checking. In this module, we im-

plement and modify the ECC approach for constraints

checking with the RoboMaster S1 robot car. We de-

sign specific constraints that are effective for the robot

car scenario based on previous studies [6, 29]. An effec-

tive constraint needs to deal with errors that frequently

occur in the scenario to improve the quality of the val-

idated context efficiently. In addition, the constraints

should avoid missing detections (i.e., false-negative in-

stances) and false alarms (i.e., false-positive instances).

Thus, to design effective constraints, we first check the

execution traces of the robot car and analyze the main

reasons for its failure. Based on the observation, we de-

0 3○https://github.com/mhammond/pywin32, Sept. 2021.



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 9

sign three types of constraint templates, which mainly

concern the rapid changes of the range sensors’ read-

ings. After determining the constraint templates, we

try with different parameter settings and selected the

best one according to their performance.

We used the following constraints in the system.

1. The change of the forward range sensor’s reading

should not exceed m meters within 1 second:

∀γ1 ∈ Sforward(∀γ2 ∈ Sforward(

|γ1.t− γ2.t| < 1→ |γ1.dist− γ2.dist| < m))

2. The change of the left range sensor’s reading

should not exceed n meters within 1 second:

∀γ1 ∈ Sleft(∀γ2 ∈ Sleft(

|γ1.t− γ2.t| < 1→ |γ1.dist− γ2.dist| < n))

3. The change of the right range sensor’s reading

should not exceed n meters within 1 second:

∀γ1 ∈ Sright(∀γ2 ∈ Sright(

|γ1.t− γ2.t| < 1→ |γ1.dist− γ2.dist| < n))

In these constraints, m and n constants can be

specified manually according to the observed execution

traces. These constraints are mainly used to alleviate

problems like random errors and sudden changes due

to transient sensor failure. When a constraint is found

to be violated, we repair the consistency error with the

drop-latest strategy. Once the context instance is val-

idated, the constraint checking module stores it in a

buffer for the autopilot program to use.

We use a stack for reserving contexts that may be

used later for constraint checking. Let us take con-

straint one as an example. It concerns two pieces of con-

text produced by the forward range sensor. The sub-

ject context-aware system, which uses the latest con-

text/sensor readings, could also fetch the values of the

historical context from the stack.

Invariant Checking. In this module, we imple-

ment and modify the CoMID approach for invariant

checking with the RoboMaster S1 robot car. The main

challenge to applying the CoMID approach is to design

an effective invariant template. The original CoMID

approach uses Daikon invariant inference engine to de-

rive invariants. However, in our RM-Testing platform,

Daikon is less effective for two reasons. On the one

hand, Daikon requires instrumenting the subject pro-

gram to record the execution traces, while we cannot

assume the availability of the subject program’s source

code in our RM-Testing platform. On the other hand,

Daikon’s invariant templates are designed for the in-

ternal variables of a program, while our environmental

invariants mainly focus on the external variables of the

environment.

As a result, we have to design our invariant tem-

plates for the RoboMaster S1 robot car. Similar to

the design of the constraint template in the constraint

checking module, we observe execution traces of the

robot car to determine the templates of the environ-

mental invariants. We also optimize the settings of the

invariants’ parameters to make the generated invariants

neither too general nor too specific.

We use the following invariants in the system. These

invariants mainly focus on preventing the car from

crashing into any obstacle.

1. When the car is about to turn, it is not too close

to the obstacles on the left or right:

dleft ≥ a ∧ dright ≥ a

where variable dleft (dright) is the reading of the

left (right) range sensor, and constant a is derived

from pre-collected traces.

2. When the car is moving forward, the readings of

the range sensors on the left or right do not change



10 J. Comput. Sci. & Technol., Month Year, Vol., No.

too rapidly:∣∣∣∣dleft1 − dleft2
∆time

∣∣∣∣ ≤ b ∧
∣∣∣∣dright1 − dright2

∆time

∣∣∣∣ ≤ b

where variable dleft1 (dright1) is the reading of left

(right) range sensor at t1, variable dleft2 (dright2)

is the reading of left (right) range sensor at t2,

∆time is |t1− t2|, and constant b is derived from

pre-collected traces.

We also design the remedy actions for the autopilot

program to invoke in order to correct the execution of

the robot car when any invariant is violated. When in-

variant one is violated, the remedy action will control

the robot car to move left or right to keep away from

obstacles. When invariant two is violated, the remedy

action will control the robot car to rotate counterclock-

wise or clockwise to prevent deviation.

DL Model Input Pruning. In this module, we

implement and modify the DISSECTOR [8] approach

to validate the input of deep learning models. More

specifically, we use TensorFlow to implement the DIS-

SECTOR approach, and train a base image recognition

model and five sub-models for each scenario in each en-

vironment. Each sub-model is associated with the spe-

cific layer of the base model. The system calculates a

PV socre for each input image based on the base model

and five sub-models.

With the original DISSECTOR approach, there is a

fixed threshold to determine whether the input image

is valid and drops the invalid ones. In some situations,

such a fixed threshold could lead the autopilot program

to abort all received images during a period of time. If

this happens during the robot car’s passing at an in-

tersection, the autopilot program will fail to respond

to a road sign. To prevent this situation, we design

a slide-window-based approach for using the DISSEC-

TOR approach. Instead of setting a fixed threshold on

the image’s PV score, we perform DISSECTOR on five

images at one time and choose the image with the high-

est PV score to be recognized by the autopilot program.

4 Comparison Between the Simulated and

Physical Environments

In this section, we will present the Program-

Environment Interaction Model (PEIM) in Subsec-

tion 4.1, demonstrate a concrete context-aware system

based on the PEIM model in Subsection 4.2, and pro-

pose three factors in the context of the previous illus-

trative program in Subsection 4.3. These factors may

affect the behavior of the target context-aware system

and the concerned input validation approaches’ perfor-

mance accordingly. They will be used as experimental

factors (i.e., unfixed independent variables) in our later

evaluation. This section provides a theoretical basis for

the evaluation design in Section 5.

4.1 Program-Environment Interaction Model

To better analyze the environment’s impact on a

context-aware system, we use a PEIMmodel to describe

the interaction between such a program and its running

environment. In contrast to traditional program models

that only concern programs themselves, the proposed

model concerns not only the program, but also its en-

vironment under interaction [7]. Note that our PEIM

model only captures the iterative nature of a context-

aware system in interactions with its environment.

Given a program P , we define its PEIM using a

tuple, (P , E, Inter, C). We use P to represent the

program, and E represents the environment where the

program executes. Conceptually, we consider environ-

ment E as a black-box program whose behavior can be

observed by monitoring its global variables, although

one may not know how E works. We assume that one

can observe P ’s behavior in E (i.e., P ’s output) and P ’s



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 11

obtained sensory data from E (i.e., P ’s input). We use

C to represent P ’s initial configuration (e.g., default

startup parameter values) and E’s initial configuration

(e.g., initial environmental layout or scenario/map set-

tings).

We use Inter to represent the interface that con-

nects P ’s input/output with E’s output/input. Specif-

ically, Inter can be described as a function that maps

environment E’s output OE to program P ’s input IP .

If one does not consider uncertainty, IP would trivially

equal OE . However, in practice, IP ̸= OE is due to

uncertainty. Their differences are caused by inaccu-

rate environmental sensing (e.g., a sensed value devi-

ates from its supposed value) or flawed physical actions

(e.g., an action is taken without exactly achieving its

supposed effect) [37]. It may be impossible for the de-

velopers to derive a complete specification that could

tell the exact values of the differences caused by the

uncertainty in any iteration. In this case, the devel-

opers could assume or derive a partial specification of

the uncertainty (e.g., the distribution followed by the

variable, such as normal distribution or Poisson distri-

bution). Therefore, we assume that Inter leverages a

partial specification of uncertainty, which contains in-

formation on ranges and distributions of uncertainty on

the conversion between IP and OE values.

P E

Ip

Op

OE

IE

C

Inter

Fig.3. PEIM’s iterative reaction loop

As a whole, our PEIM = (P , E, Inter, C) works

in an iterative way, as illustrated in Fig.3. It starts

with program P and environment E initialized by con-

figuration C (step 1). Then both P and E begin their

independent executions. At the program side, P gets

its input IP from the environment’s current output OE ,

executes based on IP , updates its global variables GP ,

and finally returns output OP (step 2). At the envi-

ronment side, E takes its input IE from the program’s

current output OP , “executes” by applying IE ’s effect

to update its global variables GE , and finally returns

output OE (step 3). Once OP or OE is produced, E

or P receives it, converts it to IE or IP , and puts the

result in a buffer for later use. When P or E finishes

its iteration, it obtains its next input IP or IE from the

corresponding buffer using some policy, e.g., FIFO or

priority-first (an input for indicating that an emergency

situation can be processed first). We conceptually rep-

resent the impact of uncertainty on the conversion be-

tween P and E by IP = Inter(OE) (step 4). Steps 2

to 4 form an iterative reaction loop.

4.2 Autopilot Program

Considering our target context-aware service of au-

tonomous driving, a DJI RoboMaster is controlled by

an autopilot program P . The basic logic of program P

is shown in Algorithm 1. Constraint checking is used in

another thread which updates the sensor reading vari-

ables; therefore it is not shown in Algorithm 1.



12 J. Comput. Sci. & Technol., Month Year, Vol., No.

Algorithm 1: Autopilot program P

# Enable or disable each approach
constraint checking enabled← true
invariant checking enabled← true
dl pruning enabled← true
# Keep going straight and turning
while true do

while not reach intersection() do
move a unit();
if invariant checking enabled then

r ← invariant checking()
if not r then

invariant repair()
end

end

end
# If parameter is true, use DISSECTOR
d = get direction(dl pruning enabled)
turn(d)

end

The environment E, according to our PEIM, de-

scribes the program’s running environment. E takes

the RoboMaster’s actions (e.g., action type typeA and

parameter paraA for action A) as input, updates its

environmental states (e.g., the position and posture of

the robot), and produces P ’s sensory data as output.

For interface Inter, the mapping between IP /IE and

OE/OP values is determined by both inaccurate sens-

ing, which maps a given environment’s output param-

eter oE to an error range [oE − lowerE , oE + upperE ]

for P to sense, and flawed physical action, which also

maps a given action parameter paraA to an error range

[paraA − lowerA, paraA + upperA]. The configuration

C specifies the initial states of P (e.g., each approach

is enabled or disabled) and E (e.g., the initial position

of the robot, and the layout of the obstacles).

4.3 Differences Between a Simulated and a

Physical Environment

Our PEIM model describes the elements that in-

teract between a context-aware system P and its run-

ning environment E. As such, we recognize three fac-

tors that differ between a simulated environment and a

physical environment, in terms of their interaction with

a context-aware system. These factors, namely scenario

setting, environmental model, and physical platform,

correspond to C, E, and Inter in the PEIM model,

respectively.

The scenario setting describes the impact of dif-

ferent configurations on program-environment interac-

tion. Although configuration C does not directly in-

volve PEIM’s iterative execution, it implicitly affects a

context-aware system’s behavior by changing P ’s and

E’s initial states. Since P always receives its inputs

from the surrounding environment E, different initial

states of P and E will result in different input sequences

that P receives. Thus, a well-chosen C favored by P

might cause E to produce high-quality inputs that are

unlikely to trigger P ’s abnormal behavior. Such inputs

will not trigger the activation of the concerned input

validation approaches, and make one unable to mea-

sure the performance of those approaches.

In the case of our target autopilot program, we con-

sider the difficulty for P to control the robot car to

avoid crashing into the obstacles. In a complicated sce-

nario full of obstacles and intersections, the RoboMas-

ter’s crashing may not be caused by the poor quality of

P ’s received inputs, but caused by the complex internal

logic to control the robot car. As a result, we cannot

directly represent the concerned input validation ap-

proaches’ performance by the observed P ’s abnormal

rate. The same is true in simple scenarios that are free

from obstacles and intersections, in which a robot car

is unlikely to crash into any obstacles even when P ’s

received inputs are of inferior quality.

The environmental model describes the internal

logic of how E produces its output OE based on a given

IE . In fact, E’s internal logic involves physical laws

that determine E’s reaction to P ’s output and E’s up-

dates of states. For a physical environment, one could



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 13

regard it as a black box program that follows natural

physical laws. For a simulated environment, it depends

on the laws that are pre-defined by the simulator de-

signers. As a result, facing the same iE values, the gap

between a physical environment’s physical laws and a

simulated environment’s physical laws could result in

different oE , and thus affects P ’s sensed iP values. Dur-

ing P ’s continuous interaction with E, such a difference

would accumulate and cause P ’s different behavior.

With our example of RoboMaster, the environmen-

tal model explains how P ’s control instructions are per-

formed by the robot car, and how P ’s sensed input

values should be updated according to its movement.

Since we build our simulated environment within the

Unity system, our simulated environment actually uses

its internal physical engine to map the robot car’s ac-

tions to its future sensor inputs. If the physical engine

does not reflect the natural physical laws accurately,

then P ’s execution trace in the simulated environment

might deviate from its execution trace in the physical

environment. Such deviation makes the direct com-

parison between P ’s abnormal rates in the simulated

environment and the physical environment less effec-

tive in demonstrating the difference between these two

environments.

The physical platform involves the interface that

connects P with E. Similar to the environmental

model, physical platform also reflects the physical laws.

While the environmental model concerns the mapping

between iE and oE values, the physical platform con-

cerns the inaccurate sensing and flawed physical actions

that affect the mapping between iP /iE and oE/oP val-

ues. Existing work on context-aware systems often as-

sumes that such mappings caused by uncertainty are

subject to normal distributions. As a result, a sim-

ulated environment usually injects uncertainty by ran-

domizing an accurate value by normal distribution [38].

When the actual uncertainty in the physical environ-

ment no longer subjects to the normal distribution, or

subjects to a normal distribution of different mean and

variance values, both P and E will receive different un-

certain input values in the two environments.

To study the impact of physical platform on the con-

cerned approaches’ performance, we consider different

types of RoboMaster cars. Besides the RoboMaster S1

described in Section 3, we also implement RM-Testing

with RoboMaster EP, a revised version of robot cars

designed by DJI. The major differences between Robo-

Maser S1 and EP include the sensors and the control

APIs. S1 uses ultrasonic sensors and a keyboard-based

API to control the robot car, while EP upgrades S1

to infrared sensors and an integrated instruction-based

Python API. Such updates lead to different observ-

ability and controllability features of RoboMaters, and

could potentially affect the quality of P ’s inputs.

5 Evaluation

In this section, we present the experiments based

on our RM-Testing platform. The experiments aim to

study the following two research questions.

RQ1: Do the selected approaches work in a physi-

cal environment as well as in a simulated environment,

in preventing a subject context-aware system from fail-

ing?

RQ2: How do the recognized three factors, namely

scenario setting, environmental model, and physical

platform, lead to the differences between the selected

approaches’ performance in a simulated environment

and that in a physical environment?

Notice that in the following evaluation, we measure

an input validation approach’s performance by its effec-

tiveness and usefulness. But our objective is to compare

the differences of the approach’s performance in differ-

ent environments, not to validate its effectiveness and



14 J. Comput. Sci. & Technol., Month Year, Vol., No.

usefulness in these environments.

5.1 Evaluation Design

Fig.4. Predefined intersection types [18].

Scenario. We design different scenarios for inves-

tigating the two research questions. For RQ1, we use a

scenario based on static urban road network, which con-

sists of straight roads and intersections, simulating the

real world. To simplify the scenario, we design the map

according to the following three principles: 1) all roads

have the same width; 2) all roads are on the same plane;

3) all intersections are one of three pre-defined types (as

shown in Fig.4). We also specify the starting point and

the ending point in the map. The choice of the starting

and the ending point guarantees the uniqueness of the

correct route for the robot car. As a result, the robot

car must turn in the correct direction at each intersec-

tion in order to reach the ending point. We put up road

signs on the ground to indicate the correct direction in

every interaction. The map we design is shown in Fig.5.

Starting 

point

Starting 

point

Ending 

point

Ending 

point

500 cm

7
0
0
 c

m

Correct 

route

Fig.5. A urban road network for RQ1 [18].

In RQ2, we design a hierarchical maze, as shown in

Fig.6, to study the impacts of the three recognized fac-

tors. The maze consists of three right turns and three

left turns. We also put up a road sign on the opposite

fence to indicate the correct direction at every intersec-

tion. The maze also guarantees the uniqueness of the

correct route for the robot car.

Correct 

route

Starting 

point

Starting 

point

Ending

point

Ending

point

Fig.6. A hierarchical maze for RQ2.

Task. In the initial states of both scenarios, the

robot car is placed at the starting point. Then the au-

topilot program controls the robot car toward the end-

ing point. The program should adjust the car’s actions

in real time based on the environmental data sensed by

the range sensors and the camera. To successfully com-

plete the task, the autopilot program has to consider

the following two objectives.

• No collision. The autopilot program should avoid

the car crashing into any obstacle. The program

should first analyze the car’s relative position on

the road, and keep a distance from all surrounding

obstacles while moving towards the ending point.

• No wrong turning. The autopilot program should

make sure that the car turns in the correct di-

rections at all intersections. The program uses a

deep-learning-based image recognition module to



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 15

identify the road signs and the correct directions

at intersections.

An autopilot program’s execution is considered

“failed” if any of the two objectives are violated, and

considered successful if the robot car reaches the ending

point without failure. The program’s quality is mea-

sured by “success rate”, which is the ratio of the num-

ber of success rounds to the number of total rounds.

Subject Context-Aware System. Conducting

experiments in both the simulated and physical envi-

ronments requires a full understanding of the subject

program under test. The subject system we used in

the experiments is designed and developed by a well-

trained senior undergraduate student. In a simulated

environment free from uncertainty, the subject program

could control the robot car to reach the ending point

with a high success rate. We will discuss the limitation

of subject selection in Subsection 5.5.

Input Validation. When we put the subject au-

topilot program in the physical environment, the suc-

cess rate for the car to reach the ending point is low-

ered because the program suffers from uncertainty. As

discussed before, input validation can be used to help

the program better cope with uncertainty. The three

aforementioned input validation approaches are used as

follows.

• We use constraints checking to detect and repair

the consistency error of sensor data, improving its

reliability.

• We use invariant checking to detect and repair the

car’s abnormal state, avoiding collision as much

as possible.

• We use DL model input pruning to improve the

accuracy of image recognition.

We select these representative approaches for the

following two reasons. One concerns the motivation of

this work that demonstrates the different performance

of an input validation approach in the simulated and

the physical environment. In this work, we are not try-

ing to compare the effectiveness of different approaches,

but trying to compare the same approach’s performance

in different environments. In other words, the expected

conclusion of this empirical work is “the performance

of approach A in a physical environment is (not) differ-

ent from that in a simulated environment”, instead of

“approach A is more effective than approach B, in the

simulated/physical environment”. The three selected

approaches focus on three different aspects that are im-

portant for validating context-aware systems’ inputs.

Another reason concerns the implementation of the se-

lected approaches. Since few related input validation

approaches are evaluated in a physical environment,

and none of these are directly applicable to our RM-

Testing platform, we have to implement the selected

approaches on the platform. Considering the engineer-

ing efforts and the scope of the available approaches,

we select three approaches proposed and designed by

our colleagues.

Table 1 describes the configurations of input valida-

tion approaches in our evaluation. We use checkmark

(“✓”) to indicate that the concerned approach is en-

abled in the corresponding configuration.

Table 1. Configurations of Input Validation Approaches [18]

Config
ID

Constraints
Checking

Invariant
Checking

DL Model
Input Pruning

1
2 ✓
3 ✓
4 ✓ ✓
5 ✓
6 ✓ ✓
7 ✓ ✓
8 ✓ ✓ ✓



16 J. Comput. Sci. & Technol., Month Year, Vol., No.

 

 

  

(a)

 

 

  

(b)

Fig.7. Evaluation in different environments [18]. (a) In the simulated environment. (b) In the physical environment.

5.2 Evaluation Setup

We construct the scenario based on the aforemen-

tioned map in the physical and the simulated environ-

ments, respectively (as shown in Fig.7). Configurations

like object scale, car behavior, range sensor installation

position, and camera angle in these environments are

the same.

Physical Environment. For the road map in

RQ1, we construct the physical scenario on flat ground

with 500cm × 700cm. We use some white papers to

cover the ground for two considerations. On the one

hand, papers can make the road as flat as possible to

prevent small potholes on the ground from affecting the

car. On the other hand, the original color of the ground

is inconsistent, and white papers help to reduce the im-

pact on image recognition. We also use paper boxes as

fences on both sides of the road and post a road sign at

every intersection to indicate the correct direction.

For the maze in RQ2, we construct the physical sce-

nario on the wooden ground. We use foam boards as

fences on both sides of the roads and post road signs at

all six interactions. Note that the physical environment

in RQ2 is newly built for this journal extension since

our previous physical environment for RQ1 has been

removed. As a result, the experimental data in RQ1

cannot be directly compared with the data we derived

in RQ2.

Simulated Environment. We construct the sim-

ulated scenario with the Unity engine 4○. To simulate

uncertainty such as random errors and mechanical de-

viation, we inject several random values based on the

characteristics of the physical environment [38]: 1) we

add a normally distributed random value to the read-

ing of the range sensor to simulate the random error; 2)

we add a large value N to the reading of range sensor

with a small probability P to simulate sudden change

due to transient sensor failure; 3) we add a normally

distributed random value to the steering angle of the

car to simulate the mechanical deviation.

5.3 Evaluation Procedure

We conduct the experiments on a laptop with AMD

Ryzen 7 4800U CPU @1.8GHz and 16GB RAM. For

the experiments in the physical environment, we de-

ploy our RM-Testing platform on the aforementioned

laptop. For the experiments in the simulated environ-

ment, we run the subject program in the Unity engine

on the laptop.

To answer research question RQ1, we conduct two

groups of experiments. We first perform a broad com-

parison of different configurations’ success rate, denoted

as exp-1. Specifically, we run the experiments in the

simulated environment of all eight configurations 50

times, and run the experiments in the physical envi-

ronment with configurations 1 and 8 (i.e., the configu-

0 4○https://unity.com, Sept. 2021.



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 17

rations with all approaches disabled and all approaches

enabled, respectively) 50 times to observe the overall

performance of these three approaches. We report the

success rate in exp-1. We also compare the success rate

in the simulated environment and the physical environ-

ment.

To answer research question RQ2, we conduct three

groups of experiments, each of which studies the impact

of one factor. The first group of experiments, which is

denoted as exp-2, studies the impact of scenario set-

tings. Specifically, we run the experiments of configu-

rations 4, 6, 7, and 8 (i.e., the configuration with all

approaches enabled, and the configurations with each

of the approaches disabled) in both the simulated and

the physical environment. We run the experiments of

each configuration 30 times, and report the percentages

of rounds that reach different intersections.

The second group of experiments in RQ2, which is

denoted as exp-3, studies the impact of physical plat-

form. Specifically, we additionally refit our RM-testing

platform with a RoboMaster EP robot car (an upgraded

version of the previous S1 robot car). We run the ex-

periments of configurations 4, 6, 7, and 8 (similar to

exp-2) with EP robot car in the physical environment.

We also run the experiments of each configuration 30

times, and report the percentages of rounds that reach

different intersections.

The third group of experiments in RQ2, denoted as

exp-4, studies the impact of the environmental model.

Specifically, we analyze the execution traces collected

in exp-2 and exp-3, and investigate the different envi-

ronments’ feedback on the program’s output. We split

the collected execution into individual iterations, each

of which consists a pair of {oP (n)(the program’s output

of the n-th iteration), iP (n+1) (the program’s input of

the n+ 1-th iteration)}. Then we use linear regression

to derive linear models that describe the environmental

logic behind different environments. By comparing the

derived linear models of the simulated and the physical

environment, we could partly answer whether our sim-

ulated environment describes the physical world pre-

cisely. Considering various actions a robot car could

perform, we only focus on the “moving forward” ac-

tion in the experiments. We measure the relationship

between the action’s parameter (i.e., the time that the

robot car should move forward) and the action’s actual

effect (i.e., the average speed that the robot car travels

following the action).

An overview of the experiments is shown in Table 2,

which follows the experimental process introduced by

Wohlin et al. [39]. In each experiment, we select the

experimental factor according to the cause-effect rela-

tionship [39], strictly fix other independent variables,

run the subject program on a robot car to help it reach

the ending point in the object scenario, and observe

the dependent variable to evaluate the effect of the fac-

tor. We will discuss more details about threats to the

validity of the experiments in Subsection 5.5.

5.4 Evaluation Results and Analyses

5.4.1 RQ1: Difference Between Performance in Differ-
ent Environments

Table 3 gives an overview of the results of exp-1 on

the success rate by the eight groups under comparison,

in which each group is executed for 50 rounds. When

all three approaches are disabled, the car never reaches

the ending point. We think the main reason for this

phenomenon is that the ending point is far away from

the starting point; therefore, the accumulated devia-

tion causes the car to deviate from the correct route.

With all three approaches enabled, the success rate in-

creases to 82%, indicating that these approaches can

effectively prevent the car from failing in the simulated

environment.



18 J. Comput. Sci. & Technol., Month Year, Vol., No.

Table 2. Overview of Experiments’ Designs

Variables
Exp Subject Object Factor

(Treatments)

Fixed
Independent

Dependent
#Tests

exp-1
Autopilot
program P v1

Scenario in
Fig.5

Environment
(simulated, physical)

Initial state,
object scale, etc.

Success rate 50

exp-2
Autopilot
program P v2

Scenario in
Fig.6

Scenario settings
(1∼6 intersections)

Environment
(simulated, physical)

Initial state,
object scale, etc.

Success rate 30

exp-3
Autopilot
program P v2

Scenario in
Fig.6

Physical platform
(RoboMaster S1,

RoboMaster EP)

Initial state,
scenario settings, etc.

Success rate 30

exp-4
Autopilot
program P v2

Scenario in
Fig.6

Environmental model
(physical,

simulated with

light uncertainty,

simulated with

severe uncertainty)

Action type, etc.
Speed/
Duration

/

Note: Column #Tests is the number of rounds for each configuration group, which is defined in Table 1. The
#Tests of exp-4 is not a number because exp-4 considers only the “moving forward” action in the traces of
exp-2 and exp-3.

Table 3. Exp-1: Success Rate in the Simulated Environment,
by Configurations [18]

Config ID #Success %Success
1 0 0%
2 0 0%
3 14 28%
4 7 14%
5 0 0%
6 1 2%
7 36 72%
8 41 82%

Note: Column #success is the number of successful
rounds. Column %success is the ratio of successful
rounds to total rounds (i.e., 50).

To demonstrate the performance of each approach,

we also calculate the success rate from the perspective

of each approach. Table 4 presents the number of suc-

cess rounds (#Success) out of 200 rounds with each

approach enabled or disabled. We find that constraints

checking increases the success rate by 28.5%, and in-

variant checking increases the success rate by 48.5%,

which shows these two approaches’ performance. How-

ever, DL model input pruning decreases the success rate

by 2.0%. We think the main reason is that the accuracy

of the original model has already reached a high level

(about 94.8%); therefore, the failure caused by predic-

tion errors is rare compared with random errors or me-

chanical deviations. Therefore, this metric cannot show

the performance of DL model input pruning. On the

other hand, decreasing by 2.0% is within a reasonable

error range.

Table 4. Exp-1: Success Rate in the Simulated Environment,
by Approaches [18]

#Success
Approach

Disabled Enabled ∆
Constraint
checking

21(10.5%) 78(39.0%) +57(+28.5%)

Invariant
checking

1(0.5%) 98(49.0%) +97(+48.5%)

DL model
input pruning

53(26.5%) 49(24.5%) -4(-2.0%)

Note: Column disabled (enabled) is the number of
successful rounds with corresponding approach dis-
abled (enabled). Column ∆ is their difference. The
number in brackets is the ratio of the successful
rounds to total rounds (i.e., 200).

Considering the outlier of DL model input pruning,



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 19

we further investigate its performance by analyzing the

accuracy. For all images in the experimental group with

DL model input pruning enabled, we predict their la-

bels with the original deep learning model (DL model

input pruning is disabled now) and then observe the

change of the accuracy. As shown in Table 5, this ap-

proach helps increase the accuracy by 1.6%. Since the

base was high, we think it has been a big improvement.

Table 5. Exp-1: Accuracy of Image Classification in the Simu-
lated Environment [18]

AccuracyConfig
ID

#Samples
Disabled Enabled

2 190 91.9% 90.5%(-1.4%)
4 371 98.4% 99.2%(+0.8%)
6 302 86.4% 90.7%(+4.3%)
8 706 97.6% 99.0%(+1.4%)

Total 1569 94.8% 96.4%(+1.6%)

Note: Column #samples is the number of image
samples in each group. Column disabled (enabled)
is the accuracy of image classification with DL
model input pruning disabled (enabled). The num-
ber in the brackets is their difference.

Then we study the performance of input validation

in the physical environment. Unfortunately, even with

all three approaches enabled, the robot car fails to reach

the ending point in all of its 50 executions. The ma-

jor reason for this zero success rate is the system’s low

accuracy in recognizing the road signs. On the one

hand, recognizing the images in the physical environ-

ment is much more difficult than in the simulated envi-

ronment. We try our best to achieve an 80% recognition

accuracy after tuning the model for several days. On

the other hand, even the accuracy of sign recognition

reaches 90%, the probability for the robot car to reach

the ending point is barely over 20%, which could be

further lowered by other uncertain factors.

Table 6. Exp-1: Success Rate in the Physical Environment [18]

Config ID
% of reaching
the 5th inter-
section

% of reaching
the 6th inter-
section

1 (all disabled) 4% 0%
8 (all enabled) 54%(+50%) 24%(+24%)

As a result, we measure the proportions of the robot

car reaching the fifth and the sixth intersections, in-

stead of its success rate reaching the ending point. The

results are shown in Table 6. With all three approaches

enabled, reaching the 5th and the 6th intersections in-

creases by 50% and 24%, respectively. The results indi-

cate that these approaches can also effectively prevent

the car from failing in the physical environment.

As mentioned above, the car passing all 15 inter-

sections and reaching the ending point reaches 82% in

the simulated environment, while its proportion reach-

ing the 6th intersection is 24% in the physical envi-

ronment. Although these approaches are effective in

both environments, we mainly focus on the difference

between (approach’s performance in) different environ-

ments. For RM-Testing with RoboMaster S1, the per-

formance of these input validation approaches in the

physical environment is not as significant as that in the

simulated environment.

Therefore, we answer research question RQ1 as fol-

lows.

Answer to RQ1. The performance of input vali-

dation approaches in a simulated environment is signif-

icantly different from that in a physical environment.

Specifically, the selected approaches could improve the

subject context-aware system’s success rate on a com-

plicated task (i.e., passing 13 interactions) by 82% in

a simulated environment, while only improving that on

an easy task (i.e., passing five interactions) by 50% in

a physical environment [18].



20 J. Comput. Sci. & Technol., Month Year, Vol., No.

Table 7. Exp-2: A Comparison Between the Physical and the Simulated Environments with Different Scenario Settings

#Rounds Passing the n-th Intersection, n=
Environment Group ID

1 2 3 4 5 6
8 (✓,✓,✓) 29 27 27 23 18 17
4 (×,✓,✓) 28(-1) 25(-2) 24(-3) 22(-1) 15(-3) 9(-8)
6 (✓,×,✓) 26(-3) 25(-2) 22(-5) 21(-2) 11(-7) 9(-8)
7 (✓,✓,×) 28(-1) 21(-6) 20(-7) 15(-8) 12(-6) 6(-11)

Physical
with EP

avg(4,6,7) 27.3(-1.7) 23.7(-3.3) 22.0(-5.0) 19.3(-3.7) 12.7(-5.3) 8.0(-9.0)
8 (✓,✓,✓) 30 25 21 18 16 11
4 (×,✓,✓) 28(-2) 22(-3) 16(-5) 14(-4) 13(-3) 8(-3)
6 (✓,×,✓) 30(0) 25(0) 20(-1) 18(0) 14(-2) 11(0)
7 (✓,✓,×) 29(-1) 26(+1) 22(+1) 20(+2) 15(-1) 14(+3)

Simulated

avg(4,6,7) 29.0(-1.0) 24.3(-0.7) 19.3(-1.7) 17.3(-0.7) 14.0(-2.0) 11.0(0.0)

Note: The marks in column group ID denote whether each approach (i.e., constraint checking, invariant check-
ing, and DL model input pruning, respectively) are enabled or not. The number in the colored brackets is the
decrease of successful rounds compared with the group that all the approaches are enabled (i.e., group 8).

Table 8. Exp-3: A Comparison Between the Physical Environments with Different Physical Platforms

#Rounds Passing the n-th Intersection, n=
Environment Group ID

1 2 3 4 5 6
8 (✓,✓,✓) 26 19 5 1 0 0
4 (×,✓,✓) 22(-4) 12(-7) 2(-3) 0(-1) 0(0) 0(0)
6 (✓,×,✓) 24(-2) 14(-5) 4(-1) 0(-1) 0(0) 0(0)
7 (✓,✓,×) 19(-7) 16(-3) 5(0) 3(+2) 0(0) 0(0)

Physical
with S1

avg(4,6,7) 21.7(-4.3) 14.0(-5.0) 3.7(-1.3) 1.0(0.0) 0.0(0.0) 0.0(0.0)
8 (✓,✓,✓) 29 27 27 23 18 17
4 (×,✓,✓) 28(-1) 25(-2) 24(-3) 22(-1) 15(-3) 9(-8)
6 (✓,×,✓) 26(-3) 25(-2) 22(-5) 21(-2) 11(-7) 9(-8)
7 (✓,✓,×) 28(-1) 21(-6) 20(-7) 15(-8) 12(-6) 6(-11)

Physical
with EP

avg(4,6,7) 27.3(-1.7) 23.7(-3.3) 22.0(-5.0) 19.3(-3.7) 12.7(-5.3) 8.0(-9.0)

Note: The marks in column group ID denote whether each approach (i.e., constraint checking, invariant check-
ing, and DL model input pruning, respectively) are enabled or not. The number in the colored brackets is the
decrease of successful rounds compared with the group that all the approaches are enabled (i.e., group 8).

5.4.2 RQ2: Impact of Scenario Setting, Environmen-

tal Model, and Physical Platform

We first study the impact of scenario setting in dis-

tinguishing a physical environment and a simulated en-

vironment (exp-2). The results are presented in Ta-

ble 7. We run the robot car in each environment for

30 rounds, and compare the number of rounds that

the car passes each intersection in the two environ-

ments. We use the decrease of the number of successful

rounds when the approach is disabled to measure the

performance of a concerned input validation approach

(indicated by “−i” following the reported number of

rounds). Basically, the results show that scenario set-

ting has different impacts on the selected input valida-

tion approaches’ performance in different environments.

For the physical environment, the selected approaches’

performance increases as the growth of the number of

intersections the robot car passes (avg. −1.67 at inter-

section 1, and avg. −9 at intersection 6). This follows

an intuitive observation that environmental uncertainty

accumulates along with a context-aware system’s execu-

tion. We conjecture that the more extensive the uncer-

tainty a context-aware system faces, the more effective

the input validation would be. We leave this issue as



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 21

our future work. When it comes to the simulated en-

vironment, the decrease of rounds remains stable when

the number of intersections grows (avg. −1 at inter-

section 1, and avg. 0 at intersection 6). This echoes

our previous finding in RQ1 that the simulated envi-

ronment does differ from the physical environment in

terms of illustrating the performance of input validation

approaches.

Then we compare the selected approaches’ perfor-

mance with the different physical platforms (exp-3), as

shown in Table 8. The result shows that RoboMas-

ter S1 fails to reach the 5th and the 6th intersections,

which can be regarded as highly complex scenarios,

while RoboMaster EP passes them with a high prob-

ability. The major reason for RoboMaster S1’s failure

is the significant uncertainty in its interaction with the

physical environment, as we explained in RQ1 and exp-

2. Nevertheless, in the scenarios whose complexities

are within both the robot cars’ capability (e.g., both

S1 and EP can pass the 1st and the 2nd intersections

with a probability of more than 50%), the input vali-

dation approaches show better performance on S1. We

conjecture that this difference results from the differ-

ent extents of environmental uncertainty suffered by

EP and S1. Compared with S1, EP is quipped with

better sensors (standard infrared range sensors for EP,

and self-resembled ultra-sonic range sensors for S1) and

a better control interface (manufacturer-provided APIs

for EP, and FPV controller for S1). As a result, for

physical platform that suffers significant uncertainty

(e.g., RoboMaster S1), the concerned input validation

approaches help a lot to alleviate the uncertainty and

reduce the abnormal rate. For the physical platform

that suffers slight uncertainty (e.g., the simulated robot

car), those approaches are less effective since environ-

mental uncertainty does not affect the quality of sen-

sor readings severely. However, despite this difference

between S1 and PE, the results of exp-3 suggest that

physical platform does affect the input validation ap-

proaches’ performance.

Last but not least, we study how environmental

model affects the behavior of the subject program in its

running environment (exp-4). Fig.8 compares the rela-

tionship derived from the robot car’s execution traces

in the physical environment and the simulated environ-

ment. The results show that the simulated and physi-

cal environments have different internal environmental

models that react to a context-aware system’s actions.

Changing the extent of introduced uncertainty would

make the derived relationship different even with the

same simulated environment. As a result, we conjec-

ture that uncertainty could not be the only major fac-

tor contributing to the difference between the simulated

and physical environments. However, the exploration of

the other root factors needs future research efforts.

Therefore, we answer research question RQ2 as fol-

lows.

Answer to RQ2. Scenario setting, physical plat-

form, and environmental model have a different im-

pact on the selected input validation approaches’ per-

formance in different environments. The impact of sce-

nario setting is stale in the simulated environment, com-

pared with the physical environment. Physical plat-

form has a significant influence on the behavior of a

context-aware system, which could partly overturn the

selected approaches’ performance. The environmental

model varies in different environments, especially when

the extent of uncertainty changes.

5.5 Threats to Validity and Discussions

We present our discussions on those major threats

from the following three aspects: the subject and object

of the experiments, the variables of the experiments,

and the number of tests of the experiments.



22 J. Comput. Sci. & Technol., Month Year, Vol., No.

Duration (ms) 

A
v

er
ag

e 
S

p
ee

d
 (

cm
/m

s)
 

 
 

 

 

 

 

 

 

(a)

Duration (ms) 

A
v
er

ag
e 

S
p
ee

d
 (

cm
/m

s)
 

 
 

 

 

 

 

 

 

(b)

Duration (ms) 

A
v
er

ag
e 

S
p
ee

d
 (

cm
/m

s)
 

 
 

 

 

 

 

 

 

(c)

Duration (ms) 

A
v
er

ag
e 

S
p
ee

d
 (

cm
/m

s)
 

 
 

 

 

 

 

 

 

(d)

Fig.8. Exp-4: A comparison between the action/effect relationship derived from different environments. (a) The physical environment
with RoboMaster S1. (b) The physical environment with RoboMaster EP. (c) The simulated environment with light uncertainty. (d)
The simulated environment with severe uncertainty.

5.5.1 Subjects and Objects

Threat. A major threat is that the autopilot pro-

gram presented in Algorithm 1 is the only investigated

subject program.

Discussion. Conducting experiments in both the

simulated environment and the physical environment

requires a full understanding of the testing program,

which restricts our choice of potential subject programs.

However, we believe it can represent real-world context-

aware systems for the following reasons. First, the au-

topilot program of a self-driving car is a typical context-

aware system [19, 20] and is widely used as the subject

in existing studies [38, 40]. Our program also repre-

sents and integrates various kinds of autopilot-related

context-aware services, including collision avoidance,

disengagement detection, and road sign recognition.

Second, we have tried various combinations of configu-

rations and hardware for the subject. For example, we

use two versions of the program (v1 and v2, as shown

in Table 2) and ensure each version works correctly in

the corresponding scenario. We implement the autopi-

lot programs for multiple robot cars (RoboMaster S1,

RoboMaster EP, and a simulated robot car), and run

the program with multiple configurations (eight config-

uration groups, as shown in Table 1). For objects, we

have tried two scenarios (as shown in Fig.5 and Fig.6),

among which the second one can provide multiple levels

of difficulty by controlling the number of intersections



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 23

(as shown in Table 7 and Table 8).

5.5.2 Variables

Threat. A major threat is the difference between

the number of configuration groups in the simulated

environment and that in the physical environment in

exp-1.

Discussion. As we discussed above, we use less

configuration groups in the physical environment be-

cause the autopilot program failed to lead the robot

car to the ending point. Nevertheless, we believe our

current experiments could indicate the difference be-

tween selected approaches’ performance in the simu-

lated and physical environments. We answer RQ1 with

only the results of their common configuration groups.

The different configurations also validate the differences

between a context-aware system’s execution in a simu-

lated environment and that in a physical environment.

This echoes our finding that context-aware-systems-

based studies should be evaluated in the physical en-

vironment.

5.5.3 Number of Conducted Tests

Threat. A major threat is that we run the exper-

iments for only 30 or 50 rounds for each configuration

group of each experiment.

Discussion. The main reason for this issue is the

high cost of conducting experiments in the physical en-

vironment [17]. However, considering we run the exper-

iments for multiple configuration groups, we run many

rounds in total (100, 120, and 120 rounds in the physical

environment in exp-1, exp-2, and exp-3, respectively).

6 Related Work

In this section, we will discuss the dynamic physical

environment that context-aware system usually faces

(related to background), introduce empirical study de-

signs (i.e., whether evaluating in a simulated or a

physical environment) of some input validation ap-

proaches for context-aware system (related to motiva-

tion), present some studies concerning the difference of

the simulated and the physical environments (related

to RQ1), and finally discuss some studies related to the

three recognized factors (related to RQ2).

6.1 Context-aware System in Dynamic Physi-

cal Environment

Different from a cyber laboratory environment that

is closed and static, the context-aware system is open

and dynamic [4, 7, 9, 36], which means the execution en-

vironment remains unknown for developers. Dynamic

environmental conditions may compromise the ability

of adaptation and decision-making of context-aware

systems [9]. Existing approaches try to mitigate the

effect of environmental dynamics [9, 24, 25, 38] mainly

by enhancing the adaptation process of the systems.

Context is of central importance when the system is

running in the dynamic physical environment. Context-

aware systems need to keep track of context [36]. The

notion and the representation of context vary in the

literature. Dourish et al. [36] summarized four assump-

tions of context: a form of information, delineable, sta-

ble, and separable from activity. Dey et al. [41] defined

context as “any information that characterizes a situa-

tion related to the interaction between humans, appli-

cations, and the surrounding environment”. Matalonga

et al. [35] abstracted context as context variables and

inputs from sensors. Sama et al.[4] defined proposi-

tional context variable as “the abstract representation

of relational expression over sensed context variables”.

We apply a definition similar to [4, 35] because of the

similarity of scenarios.

Paden et al. [19] and Badue et al. [20] divided au-

topilot program of a self-driving car, a typical context-

aware system running in a dynamic physical environ-



24 J. Comput. Sci. & Technol., Month Year, Vol., No.

ment, into two parts: the perception system and the

decision-making system. The perception system is re-

sponsible for sensing the dynamic environment to ob-

tain the latest information, while the decision-making

system makes decisions in response to environmental

changes [20]. A self-driving car may face various and

dynamic traffic situations, and thus the Behavior Se-

lector, a subsystem of the decision-making system, is

responsible for selecting actions by some techniques ac-

cording to the current state [20].

6.2 Empirical Study Designs of Input Valida-

tion Approaches for Context-Aware Sys-

tem

We survey empirical study designs of some input

validation approaches for the context-aware system.

The overall results are shown in Table 9.

Table 9. Survey on Literature About How They Evaluate the
Approaches

LIT Studied CAS P? S?
[5] robot car, Avatar simulator ✓ ✓
[6] RFID-based warehouse system ✓
[7] NAO robot, UAV ✓ ✓
[8] self-driving car ✓
[9] intelligent vehicle system ✓
[10] smart meter/medical devices ✓
[11] location-based phone-adaptor ✓
[12] syllabus management system ✓
[13] UML design tools ✓
[14] table datasets ✓
[15] self-driving car ✓
[16] self-driving car ✓

Note: Column LIT is the literature number. Col-
umn P? (S?) means whether this study evaluated
the approach in the physical environment (in the
simulated/trace-based environment).

Constraint Checking. Nentwich et al. [12] pro-

posed xlinkit for repairing inconsistent XML docu-

ments. This framework builds on an incremental check-

ing model. Egyed et al. [13] focused on repairing incon-

sistency errors in UML models. These studies [12, 13]

evaluated the approaches with pre-collected or gener-

ated context data.

Xu et al. [6] proposed two strategies in efficient

checking inconsistent context, namely partial constraint

checking strategy (denoted as PCC) and entire con-

straint checking strategy (denoted as ECC). Both the

PCC and the ECC approaches were evaluated in the

simulated environments using real context data.

Invariant Checking. Invariant checking enables

programs to detect potential abnormal states at run-

time. Xu et al. [5] monitored runtime errors for an

application and related them to responsible defects in

the application. Qin et al. [7] explored multi-invariant

detection based on context-based trace grouping. These

studies [5, 7] evaluated the approaches in both the sim-

ulated and the physical environments.

Besides, Ramirez et al. [9] proposed an approach

that discovers combinations of environmental condi-

tions to trigger specification-violating behaviors. Ali-

abadi et al. [10] explored mining dynamic system prop-

erties around time. Wang et al. [11] proposed identify-

ing program points where the system’s behavior may be

affected by context changes. These studies [9, 10, 11]

evaluated the approaches in the simulated environ-

ments using generated context data.

DL Model Input Pruning. Input validation for

the deep learning model could greatly improve the per-

formance of DL models in terms of their accuracy in

predicting. Chu et al. [14] focused on data cleaning for

more qualified training data. Pei et al. [15] converted

the corner-case generation problem to the joint opti-

mization problem. Tian et al. [16] proposed a testing

tool for detecting abnormal state of DNN-driven ve-

hicles that can potentially lead to crashing. Wang et

al. [8] tracked each input’s interpretation for estimating

its validity. These studies [8, 14, 15, 16] evaluated the

approaches using static datasets.

As discussed above, most related studies evalu-



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 25

ated the proposed approaches in the simulated environ-

ments, and few conducted experiments in the physical

environments.

6.3 Difference of Simulated and Physical Envi-

ronments

As far as we know, there is few literatures focused

on the difference of evaluation in simulated and physical

environments for context-aware systems. Magnusson et

al. [42] invited five fighter pilots to fly the same mission

in both a simulator and a real flight, examining the dif-

ference of their reactions. Bishop et al. [43] compared

respondents’ cognitive reactions to a real urban park

environment and a simulated one.

Although these studies and ours all discuss the dif-

ference between simulated and physical environments,

they mainly studied from the perspectives of psychol-

ogy, human-robot interaction, or simulated-physical in-

tegration, while we focus on the evaluation of input

validation approaches for the context-aware system.

6.4 Potential Factors Leading Difference

Many studies explicitly or implicitly concerned the

effect of the three recognized potential factors.

Scenario Setting. Fredericks et al. [24] used util-

ity functions to guide the adaptation process of context-

aware systems and provide assurance when the scenario

changes. Ramirez et al. [9] proposed an approach to

search for specific combinations of environmental con-

ditions that violate the requirements. Jiang et al. [25]

tried to automatically infer system invariants that cap-

ture the temporal and spatial aspects, which can help

reduce the failure rate in a complex scenario. The con-

ditions can be further used to generate test cases. These

studies tried to make the context-aware system less af-

fected by the scenario setting factor and behave safely

in an unanticipated scenario.

Environmental Model. Qin et al. [44] pre-

sented a sampling-based approach for testing context-

aware systems. They identified “infinite reaction loop”

and “uncertain interaction” as the major issues that

make a context-aware system easily error-prone, echo-

ing our environmental model factor and physical plat-

form factor, respectively. Weyns et al. [45] introduced

a notation for describing multiple interacting MAPE

loops [46]. In the constituent parts of their self-adaptive

system, “environment” refers to an external component

that corresponds to both non-controllable software and

hardware entities [45]. The insight is similar to our

environmental model factor.

Physical Platform. Ramirez et al. [37] reported a

taxonomy of uncertainty for dynamically adaptive sys-

tems. They defined runtime uncertainty as that that

occurs from the interaction between the system and its

unpredictable environment, and then introduced some

related work for managing it. Xu et al. [6] presented a

partial constraint checking approach for pervasive com-

puting to prevent the system from being seriously af-

fected by the sensor noise. Yang et al. [38] tried to verify

self-adaptive applications through modeling adaptation

logic and environmental constraints with uncertainty

explicitly considered. All these studies concerned the

interaction between context-aware systems and the en-

vironments. They were dedicated to making context-

aware systems less affected by the physical platform

factor.

For clarity, the aforementioned studies explicitly or

implicitly concerned part of the three factors mainly for

proposing approaches to control or limit them, while we

focus on investigating the impact of the factors. There

is an essential difference between existing studies and

ours.



26 J. Comput. Sci. & Technol., Month Year, Vol., No.

7 Conclusions

In this article, we built a testing platform for

context-aware systems to study whether different en-

vironments (i.e., physical or simulated) could lead to

different performances of input validation approaches.

The experimental results showed that the performance

of three up-to-date input validation approaches (i.e.,

constraint checking, invariant checking, and DL model

input pruning) in the simulated environment (improv-

ing the task success rate by 82% compared with the

system without these approaches) does differ from their

performance in the physical environment (improving

the task success rate by 50%). Based on an execution

model of the context-aware system called PEIM, we

also recognized three factors that may affect the per-

formance of input validation approaches, namely sce-

nario setting, environmental model, and physical plat-

form. The experimental results showed that these fac-

tors have different impacts on the performance of input

validation approaches in different environments, among

which physical platform makes the most significant in-

fluence.

Our work still has room for improvement. It cur-

rently only relies on one type of context-aware system

(i.e., autopilot program). The involved environmental

scenarios designed by ourselves might lack diversity. Al-

though our experimental results demonstrated the se-

lected approaches’ different performance between the

simulated and the physical environments under these

settings, more concerned context-aware systems and

more environments could make our conclusions apply

to a broader scope.

Besides, the work also brings new research oppor-

tunities. Developing reliable context-aware systems is

well-evidenced to be a difficult task in the community of

software engineering. Our work can be regarded as an

explanation of how the low-quality inputs could harness

the reliability of a context-aware system. We observed

a context-aware system’s different behaviors after tem-

pering different factors. Specific approaches could be

proposed to alleviate the negative impact of uncertain

inputs toward these factors. This needs further research

and validation, and we keep it as future work.

References

[1] Lü J, Ma X, Huang Y, Cao C, Xu F. Internetware: a

shift of software paradigm. In Proc. the First Asia-Pacific

Symposium on Internetware, October 2009, pp. 1-9. DOI:

10.1145/1640206.1640213.

[2] Sama M, Elbaum S, Raimondi F, Rosenblum D S, Wang

Z. Context-aware adaptive applications: Fault patterns

and their automated identification. IEEE Transactions

on Software Engineering, 2010, 36(5): 644-661. DOI:

10.1109/TSE.2010.35.

[3] Qin Y, Xu C, Chen Z, Lü J. Software testing for

cyber-physical systems suffering uncertainty. SCIENTIA

SINICA Informationis, 2019, 49(11): 1428-1450. DOI:

10.1360/N112018-00305. (in Chinese)

[4] Sama M, Rosenblum D S, Wang Z, Elbaum S. Model-based

fault detection in context-aware adaptive applications. In

Proc. the 16th ACM SIGSOFT International Symposium

on Foundations of software engineering, November 2008,

pp. 261-271. DOI: 10.1145/1453101.1453136.

[5] Xu C, Cheung S C, Ma X, Cao C, Lu J. Adam: Iden-

tifying defects in context-aware adaptation. Journal of

Systems and Software, 2012, 85(12): 2812-2828. DOI:

10.1016/j.jss.2012.04.078.

[6] Xu C, Cheung S C, Chan W K, Ye C. Partial con-

straint checking for context consistency in pervasive

computing. ACM Transactions on Software Engineering

and Methodology (TOSEM), 2010, 19(3): 1-61. DOI:

10.1145/1656250.1656253.

[7] Qin Y, Xie T, Xu C, Astorga A, Lu J. CoMID: Context-

Based Multiinvariant Detection for Monitoring Cyber-

Physical Software. IEEE Transactions on Reliability, 2019,

69(1): 106-123. DOI: 10.1109/TR.2019.2933324.

[8] Wang H, Xu J, Xu C, Ma X, Lu J. Dissector: Input valida-

tion for deep learning applications by crossing-layer dissec-

tion. In Proc. the 42nd ACM/IEEE International Confer-

ence on Software Engineering (ICSE 2020), May 2020, pp.

727-738. DOI: 10.1145/3377811.3380379.



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 27

[9] Ramirez A J, Jensen A C, Cheng B H, Knoester D B.

Automatically exploring how uncertainty impacts behav-

ior of dynamically adaptive systems. In Proc. the 26th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, November 2011, pp. 568-571. DOI:

10.1109/ASE.2011.6100127.

[10] Aliabadi M R, Kamath A A, Gascon-Samson J, Pattabira-

man K. ARTINALI: dynamic invariant detection for cyber-

physical system security. In Proc. the 2017 11th Joint Meet-

ing on Foundations of Software Engineering, August 2017,

pp. 349-361. DOI: 10.1145/3106237.3106282.

[11] Wang Z, Elbaum S, Rosenblum D S. Automated genera-

tion of context-aware tests. In Proc. the 29th International

Conference on Software Engineering, May 2007, pp. 406-

415. DOI: 10.1109/ICSE.2007.18.

[12] Nentwich C, Capra L, Emmerich W, Finkelsteiin A. xlinkit:

A consistency checking and smart link generation service.

ACM Transactions on Internet Technology (TOIT), 2002,

2(2): 151-185. DOI: 10.1145/514183.514186.

[13] Egyed A. Fixing inconsistencies in UML design mod-

els. In Proc. the 29th International Conference on

Software Engineering, May 2007, pp. 292-301. DOI:

10.1109/ICSE.2007.38.

[14] Chu X, Morcos J, Ilyas I F, Ouzzani M, Papotti P, Tang N,

Ye Y. Katara: A data cleaning system powered by knowl-

edge bases and crowdsourcing. In Proc. the 2015 ACM SIG-

MOD International Conference on Management of Data,

May 2015, pp. 1247-1261. DOI: 10.1145/2723372.2749431.

[15] Pei K, Cao Y, Yang J, Jana S. Deepxplore: Automated

whitebox testing of deep learning systems. In Proc. the

26th Symposium on Operating Systems Principles, Octo-

ber 2017, pp. 1-18. DOI: 10.1145/3132747.3132785.

[16] Tian Y, Pei K, Jana S, Ray B. DeepTest: Au-

tomated Testing of Deep-Neural-Network-Driven Au-

tonomous Cars. In Proc. the 40th International Confer-

ence on Software Engineering, May 2018, pp. 303-314. DOI:

10.1145/3180155.3180220.

[17] Luo C, Goncalves J, Velloso E, Kostakos V. A survey of

context simulation for testing mobile context-aware appli-

cations. ACM Computing Surveys (CSUR), 2020, 53(1): 1-

39. DOI: 10.1145/3372788.

[18] Chen J, Qin Y, Wang H, Xu C. Simulated or Physical?

An Empirical Study on Input Validation for Context-aware

Systems in Different Environments. In Proc. the 12th Asia-

Pacific Symposium on Internetware, May 2021, pp. 146-

155. DOI: 10.1145/3457913.3457919.

[19] Paden B, Čáp M, Yong S Z, Yershov D, Frazzoli E. A survey

of motion planning and control techniques for self-driving

urban vehicles. IEEE Transactions on Intelligent Vehicles,

2016, 1(1): 33-55. DOI: 10.1109/TIV.2016.2578706.

[20] Badue C, Guidolini R, Carneiro R V, Azevedo P, Cardoso V

B, Forechi A, Jesus L, Berriel R, Paixao T M, Mutz F. Self-

driving cars: A survey. Expert Systems with Applications,

2020: 113816. DOI: 10.1016/j.eswa.2020.113816.

[21] Ma N, Gao Y, Li J, Li D. Interactive cognition in self-

driving. SCIENTIA SINICA Informationis, 2018, 48: 1083-

1096. DOI: 10.1360/N112018-00028. (in Chinese)

[22] Xi W, Xu C, Yang W, Hong X. How context inconsistency

and its resolution impact context-aware applications. Jour-

nal of Frontiers of Computer Science and Technology, 2014,

8(4): 427. DOI: 10.3778/j.issn.1673-9418.1311013. (in Chi-

nese)

[23] Esfahani N, Malek S. Uncertainty in self-adaptive software

systems. In Software Engineering for Self-Adaptive Systems

II, Springer, 2013: 214-238. DOI: 10.1007/978-3-642-35813-

5 9.

[24] Fredericks E M, DeVries B, Cheng B H C. Towards run-time

adaptation of test cases for self-adaptive systems in the face

of uncertainty. In Proc. the 9th International Symposium on

Software Engineering for Adaptive and Self-Managing Sys-

tems, June 2014, pp. 17-26. DOI: 10.1145/2593929.2593937.

[25] Jiang H, Elbaum S, Detweiler C. Reducing failure rates of

robotic systems though inferred invariants monitoring. In

2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, November 2013, pp. 1899-1906. DOI:

10.1109/IROS.2013.6696608.

[26] Al-Garadi M A, Mohamed A, Al-Ali A K, Du X, Ali I,

Guizani M. A survey of machine and deep learning meth-

ods for internet of things (IoT) security. IEEE Communi-

cations Surveys & Tutorials, 2020, 22(3): 1646-1685. DOI:

10.1109/COMST.2020.2988293.

[27] Li Z, Ma X, Xu C, Cao C, Xu J, Lü J. Boosting opera-

tional dnn testing efficiency through conditioning. In Proc.

the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Founda-

tions of Software Engineering, August 2019, pp. 499-509.

DOI: 10.1145/3338906.3338930.

[28] Li Z, Ma X, Xu C, Xu J, Cao C, Lü J. Operational calibra-

tion: Debugging confidence errors for dnns in the field. In

Proc. the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Founda-

tions of Software Engineering, November 2020, pp. 901-913.

DOI: 10.1145/3368089.3409696.



28 J. Comput. Sci. & Technol., Month Year, Vol., No.

[29] Nentwich C, Emmerich W, Finkelsteiin A, Ellmer E. Flex-

ible consistency checking. ACM Transactions on Software

Engineering and Methodology (TOSEM), 2003, 12(1): 28-

63. DOI: 10.1145/839268.839271.

[30] Gehrke J, Madden S. Query processing in sensor net-

works. IEEE Pervasive Computing, 2004, 3(1): 46-55. DOI:

10.1109/MPRV.2004.1269131.

[31] Tong Y, Qin Y, Jiang Y, Xu C, Cao C, Ma X. Timely

and Accurate Detection of Model Deviation in Self-adaptive

Software-intensive Systems. In Proc. the 29th ACM Joint

Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering,

August 2021, pp 168-180. DOI: 10.1145/3468264.3468548.

[32] Ernst M D, Perkins J H, Guo P J, McCamant S,

Pacheco C, Tschantz M S, Xiao C. The Daikon sys-

tem for dynamic detection of likely invariants. Science

of computer programming, 2007, 69(1-3): 35-45. DOI:

10.1016/j.scico.2007.01.015.

[33] Jiang H, Elbaum S, Detweiler C. Inferring and monitoring

invariants in robotic systems. Autonomous Robots, 2017,

41(4): 1027-1046. DOI: 10.1007/s10514-016-9576-y.

[34] Bai X, YANG M, SHI B, LIAO M. Deep learning for scene

text detection and recognition. SCIENTIA SINICA Infor-

mationis, 2018, 48(5): 531-544. DOI: 10.1360/N112018-

00003. (In Chinese)

[35] Matalonga S, Travassos G H. Testing context-aware

software systems: Unchain the context, set it free!.

In Proc. the 31st Brazilian Symposium on Software

Engineering, September 2017, pp. 250-254. DOI:

10.1145/3131151.3131190.

[36] Dourish P. What we talk about when we talk about con-

text. Personal and Ubiquitous Computing, 2004, 8(1): 19-

30. DOI: 10.1007/s00779-003-0253-8.

[37] Ramirez A J, Jensen A C, Cheng B H C. A taxonomy of un-

certainty for dynamically adaptive systems. In 2012 7th In-

ternational Symposium on Software Engineering for Adap-

tive and Self-Managing Systems (SEAMS), June 2012, pp.

99-108. DOI: 10.1109/SEAMS.2012.6224396.

[38] Yang W, Xu C, Liu Y, Cao C, Ma X, Lu J. Verifying

self-adaptive applications suffering uncertainty. In Proc. the

29th ACM/IEEE international conference on Automated

software engineering, September 2014, pp. 199-210. DOI:

10.1145/2642937.2642999.

[39] Wohlin C, Runeson P, Höst M, Ohlsson M C, Reg-

nell B, Wesslén A. Experimentation in software engi-

neering. Springer Science & Business Media, 2012. DOI:

10.1007/978-3-642-29044-2.

[40] Zhang L, Xu C, Ma X, Gu T, Hong X, Cao C, Lu J.

Resynchronizing model-based self-adaptive systems with

environments. In 2012 19th Asia-Pacific Software Engi-

neering Conference, December 2012, 1: 184-193. DOI:

10.1109/APSEC.2012.62.

[41] Dey A K, Abowd G D, Salber D. A concep-

tual framework and a toolkit for supporting the

rapid prototyping of context-aware applications. Human-

Computer Interaction, 2001, 16(2-4): 97-166. DOI:

10.1207/S15327051HCI16234 02.

[42] Magnusson S. Similarities and differences in psychophysio-

logical reactions between simulated and real air-to-ground

missions. The international journal of aviation psychology,

2002, 12(1): 49-61. DOI: 10.1207/S15327108IJAP1201 5.

[43] Bishop I D, Rohrmann B. Subjective responses to simu-

lated and real environments: a comparison. Landscape and

urban planning, 2003, 65(4): 261-277. DOI: 10.1016/S0169-

2046(03)00070-7.

[44] Qin Y, Xu C, Yu P, Lu J. SIT: Sampling-based interac-

tive testing for self-adaptive apps. Journal of Systems and

Software, 2016, 120: 70-88. DOI: 10.1016/j.jss.2016.07.002.

[45] Weyns D, Schmerl B, Grassi V, Malek S, Mirandola R, Pre-

hofer C, Wuttke J, Andersson J, Giese H, Göschka K M.

On patterns for decentralized control in self-adaptive sys-

tems. In Software Engineering for Self-Adaptive Systems II,

Springer, 2013, pp. 76-107. DOI: 10.1007/978-3-642-35813-

5 4.

[46] Kephart J O, Chess D M. The vision of auto-

nomic computing. Computer, 2003, 36(1): 41-50. DOI:

10.1109/MC.2003.1160055.

Jin-Chi Chen is currently a

master student with the State Key

Laboratory for Novel Software Tech-

nology and Department of Computer

Science and Technology at Nanjing

University, Nanjing. His research

interests include self-adaptive sys-

tems.



Jin-Chi Chen et al.: A Comparison of CAS Input Validation in Different Environments 29

Yi Qin is currently an assistant

researcher with the State Key Labo-

ratory for Novel Software Technology

and Department of Computer Science

and Technology at Nanjing University,

Nanjing. He received his Ph.D. degree

in computer science and technology

from Nanjing University in 2018. His

research interests include self-adaptive software systems,

and software testing and analysis.

Hui-Yan Wang is an assistant

professor with the State Key Labo-

ratory for Novel Software Technology

and Department of Computer Science

and Technology at Nanjing University,

Nanjing. She received her B.S. and

Ph.D. degrees in computer science and

technology from Nanjing University

in 2015 and 2021. Her research interests are intelligent

software quality assurance, context management, software

analyses and testing. She has published many referred pa-

pers in both international software engineering conferences

and journals. She is a member of CCF.

Chang Xu is currently a full pro-

fessor with the State Key Laboratory

for Novel Software Technology and

Department of Computer Science and

Technology at Nanjing University,

Nanjing. He received his Ph.D. degree

in computer science and engineering

from The Hong Kong University of

Science and Technology in 2008. His research interests

include big data software engineering, intelligent software

testing and analysis, and adaptive and autonomous

software systems. He co-authored over 160 peer-reviewed

papers and served in technical program committees of

various international software engineering conferences. He

is member of ACM, and a senior member of CCF and IEEE.


