
The Journal of Systems and Software 207 (2024) 111852

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Incremental-concurrent fusion checking for efficient context consistency✩

Lingyu Zhang, Huiyan Wang ∗, Chuyang Chen, Chang Xu, Ping Yu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
Department of Computer Science and Technology, Nanjing University, Nanjing, China

A R T I C L E I N F O

Keywords:
Constraint checking
Context consistency
Check fusion

A B S T R A C T

Smart applications can adapt their behaviors based on their understanding to environments (a.k.a. contexts).
This capability can, however, incur unexpected misbehavior or even crash, when application contexts are
inaccurate or conflicting with each other due to environmental noises. In the recent decade, various constraint
checking techniques have been proposed to help validate contexts against consistency constraints, in order to
guard context consistency in time. However, with growing environmental dynamics and context volume, it is
getting increasingly challenging to ensure context consistency. In this article, we propose a novel approach,
INFuse, to fuse together two lines of techniques, namely, incremental checking and concurrent checking, for
sound and efficient constraint checking. Realizing such check fusion has to address the challenges rising from
the gap between the micro analysis for reusable elements in incremental checking and the macro collection
of parallel tasks in concurrent checking. INFuse solves them by automatically deciding maximal concurrent
boundaries in a sequence of context changes, and soundly fusing incremental and concurrent checking together
for context consistency, with theoretical guarantees. Our experimental evaluation with real-world context data
shows that INFuse could improve constraint checking efficiency by 3.0x–120.3x, as compared with existing
state-of-the-art techniques, with better checking quality.
1. Introduction

In the software engineering community, consistency management
of software artifacts (e.g., edit script (Kehrer et al., 2013), UML mod-
els (Bashir et al., 2016; Messaoudi et al., 2017; Wei and Sun, 2021),
and XML documents (Nentwich et al., 2002; Reiss, 2006; Handley et al.,
2021)) has received much research attention (Brun et al., 2011), and
been intensively involved in various software development processes.
In the recent decades, there is an increasing demand for managing the
consistency of contexts, in order to support smart, yet reliable adapta-
tion behaviors in self-adaptive or context-aware applications (Xu et al.,
2020). Unlike traditional software artifacts that are typically static or
evolve slowly, contexts, representing an application’s understanding to
its running environment, are typically prone to frequent changes, and
thus call for efficient constraint checking techniques for their runtime
validation.

Such validation is usually conducted by examining the contexts col-
lected by an application (or its supporting infrastructure) against a set
of predefined consistency constraints (Nentwich et al., 2002; Wang et al.,
2021; Guo et al., 2017). If any constraint violation is detected, it would
indicate the occurrence of a context inconsistency. Various constraint

✩ Editor: Heiko Koziolek.
∗ Corresponding author at: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.

E-mail addresses: zly@smail.nju.edu.cn (L. Zhang), why@nju.edu.cn (H. Wang), chuyangchen2018@outlook.com (C. Chen), changxu@nju.edu.cn (C. Xu),
yuping@nju.edu.cn (P. Yu).

checking techniques (Nentwich et al., 2002; Wang et al., 2021; Xu
et al., 2010, 2013, 2015) have been studied with different efficiency
benefits and costs, e.g., xlinkit (Nentwich et al., 2002), working in a
full checking way, generating all results as the correctness baseline,
PCC (Xu et al., 2010), checking incrementally by reusing previous
results for more efficiency, and Con-C (Xu et al., 2013), checking
concurrently basic parallel units that carry similar workloads. However,
with the increasing growth of environmental dynamics and context
volume, it is getting more and more challenging to validate context
consistency in a timely manner, thus causing missed inconsistencies or
wrong reports (Wang et al., 2021).

One natural intuition is to fuse incremental checking (e.g., PCC (Xu
et al., 2010)) and concurrent checking (e.g., Con-C (Xu et al., 2013))
for even higher efficiency. Indeed, they have been developed from
two orthogonal research dimensions, but their fusion is actually non-
trivial, with no substantial progress after nearly one decade since their
initial proposals. The essential challenge probably comes from this gap:
incremental checking analyzes in a fine granularity for reusable parts
in previous checking results, while concurrent checking requests to
maximize parallel tasks. In other words, the former has to accumulate
vailable online 18 September 2023
164-1212/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2023.111852
Received 18 October 2022; Received in revised form 2 February 2023; Accepted 11
 September 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
mailto:zly@smail.nju.edu.cn
mailto:why@nju.edu.cn
mailto:chuyangchen2018@outlook.com
mailto:changxu@nju.edu.cn
mailto:yuping@nju.edu.cn
https://doi.org/10.1016/j.jss.2023.111852
https://doi.org/10.1016/j.jss.2023.111852
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111852&domain=pdf

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

C
t
a
f
w
(
c
a
s
t

c
c
2

t

t

i
e
y
i

2

2

r
2
s
t
r
m
r

w
’
c

t
c

t
a
2
(
2
(

𝑓

𝐶
t
F
r
2

𝖲

c
w
c
c

2

a
m
𝗋
s
e
i
𝗋
l
s
m
a
t

e
a
w
𝗒

micro parts (since larger parts not easy for analysis), but the latter
requires macro arrangements (since smaller parts not effective for con-
currency). If one naively injects concurrent checking into incremental
checking (e.g., by concurrently conducting the reusable result analysis
in a fine granularity), the performance may instead be compromised
(e.g., even less efficient than incremental checking, as our later ex-
periments validated). On the other hand, if one aggressively enlarges
the analysis granularity of incremental checking, improper grouping
of context changes as a whole could instead lead to wrong results,
unfortunately denying the purpose of constraint checking itself.

In this article, we propose INFuse (short form for Incremental-
oNcurrent Fusion ChEcking) to address these two challenges from
he above gap: (1) What-correctness problem: to automatically analyze
nd decide the boundaries of collected context changes under checking
or maximal concurrency (i.e., checking these context changes as a
hole guarantees to be correct, as against checking them individually);

2) How-correctness problem: to soundly switch between incremental
hecking and concurrent checking upon the context changes grouped
s a whole for higher efficiency (i.e., efficiently conducting both re-
ult reusing and parallel analysis). We address both challenges with
heoretical guarantees.

We experimentally evaluated INFuse and compared it to existing
onstraint checking techniques on application scenarios with real-world
ontext data following existing work (Wang et al., 2021; Xu et al.,
010, 2013, 2015). The experimental results show that INFuse could

dramatically boost the checking efficiency (up to 120.3x, 62.3x, and
5.7x improvements) by saving checking time (up to 99.2%, 98.4%,
and 85.0% time reductions), as compared to existing techniques (ECC,
Con-C, and PCC, respectively). When tested in a practical scenario
with dynamic changes, INFuse won with extremely high efficiency
and almost perfect checking results, while existing techniques suffered
down to a 3.3% precision and 1.3% recall, exhibiting INFuse’s clear
echnical superiority and applicability.

In summary, we in this article make the following contributions:

• We propose a novel constraint checking approach, INFuse, with
incremental-concurrent checking techniques soundly fused.

• We prove INFuse’s properties, namely, what-correctness for con-
currency maximization, and how-correctness for fusion sound-
ness, together contributing to INFuse’s checking correctness and
high efficiency.

• We studie INFuse’s time complexity, formally analyzing its effi-
ciency superiority over existing techniques algorithmically.

• We evaluate INFuse and compared it to state-of-the-art tech-
niques, observing substantial efficiency improvement and desir-
able checking quality.

We also summarize our major extensions made in this article over
he its preliminary conference version (Zhang et al., 2022) below:

• Methodology: We prove two theorems in details about INFuse’s
what-correctness and how-correctness (Sections 3.2 and 3.3), ex-
plain the realization details in applying INFuse in practice (Sec-
tion 3.4), and analyze INFuse’s time complexity and compared it
to those of existing checking techniques (Section 3.5);

• Evaluation: We strengthen the scale of experiments (24-h contexts
now vs. 3-h contexts originally) for answering three original re-
search questions (RQ1, RQ2, and RQ5 in Section 4), and add two
new research questions (RQ3 and RQ4) for studying INFuse fusion
mechanism and the impact of complexity factors (Section 4).

The remainder of this article is organized as follows: Section 2
ntroduces the background and formulates our problem. Section 3
laborates on our INFuse’s methodology with formal complexity anal-
sis. Section 4 evaluates INFuse with real-world application scenar-
os. Section 5 discusses the related work in recent years, and finally
2

Section 6 concludes this article. c
. Background

.1. Preliminary

We define a context as a piece of information about an application’s
unning environment (e.g., location, user, activity, etc.) (Wang et al.,
021; Xu et al., 2010, 2015). Each context can be modeled as a finite
et of relevant elements. For example, in a package delivery applica-
ion (Wang et al., 2021; Xu et al., 2010) that schedules transportation
obots across warehouse, all robots currently in warehouse 𝗑 can be
odeled by a context 𝐶𝗑 = {𝗋1, 𝗋2,…}, in which 𝗋𝑖 identifies a specific

obot.
We define a context change to be an update to an existing context,

hich can be an addition change or deletion change. We use symbols (‘‘+
’, ‘‘-’’) to represent them, respectively. Consider this application with
ontext 𝐶𝗑 = {𝗋1, 𝗋2}. If robot 𝗋3 enters or 𝗋2 leaves the warehouse, we

have context changes <+, 𝐶𝗑, 𝗋3> or < −, 𝐶𝗑, 𝗋2>.
We use context pool to represent the collection of all contexts in-

eresting to the application. For the aforementioned application, its
ontext pool is 𝑃 = {𝐶𝗑, 𝐶𝗒}, which considers warehouses 𝗑 and 𝗒.

To validate contexts, one could define consistency constraints (Nen-
wich et al., 2002; Wang et al., 2021), which model physical laws or
pplication-specific requirements (Nentwich et al., 2002; Wang et al.,
021; Xu et al., 2010), and check whether any constraint is violated
when yes, an inconsistency is detected). Existing work (Wang et al.,
021; Xu et al., 2010, 2015) has mostly followed a first order logic
FOL) styled language to specify consistency constraints:

∶=∀𝑣 ∈ 𝐶(𝑓) | ∃𝑣 ∈ 𝐶(𝑓) | (𝑓) 𝚊𝚗𝚍 (𝑓) | (𝑓) 𝚘𝚛 (𝑓) |

(𝑓) 𝚒𝚖𝚙𝚕𝚒𝚎𝚜 (𝑓) | 𝚗𝚘𝚝 (𝑓) | 𝑏𝑓𝑢𝑛𝑐(𝑣1, 𝑣2,… , 𝑣𝑛) | 𝖳𝗋𝗎𝖾 | 𝖥𝖺𝗅𝗌𝖾.

Here, 𝐶 represents a context; 𝑣𝑖 is a variable, taking an element from
as its value; the 𝑏𝑓𝑢𝑛𝑐 terminal is a domain-specific function that

akes values of variables as input and returns a Boolean value (True or
alse). For example, one may define a consistency constraint like ‘‘any
obot can only be in one warehouse at the same time’’ (Wang et al.,
021), for the aforementioned application:

𝗅𝗈𝖼 ∶ ∀𝑣𝗑 ∈ 𝐶𝗑(𝚗𝚘𝚝(∃𝑣𝗒 ∈ 𝐶𝗒(𝚂𝚊𝚖𝚎(𝑣𝗑, 𝑣𝗒)))).

Incremental checking (Xu et al., 2010) examines each context
hange to analyze its impact on a constraint’s previous checking result,
hile concurrent checking (Xu et al., 2013) would request multiple

ontext changes for parallelism. In the following, we analyze the
hallenges when one combines the two techniques together.

.2. Illustrative example and challenges

Consider our package delivery application with two warehouses (𝗑
nd 𝗒) and three robots (𝗋1, 𝗋2, and 𝗋3). In this scenario, robot move-
ents are captured by the RFID technology. Suppose that initially robot

1 is in warehouse 𝗑 and 𝗋2 in 𝗒. However, RFID technology typically
uffers from missing reads (Jeffery et al., 2006; Rao et al., 2006; Patil
t al., 2015; Fescioglu-Ünver et al., 2015) during this process, and this
s common in practical RFID-enhanced sensing. In this scenario, robot
3 enters warehouse 𝗒, and 𝗋2 leaves 𝗒 and re-enters 𝗒. Next, robots 𝗋3
eaves 𝗒, enters 𝗑, and leaves 𝗑 in turn. Therefore, we consider such a
ituation, in which the movement of robot 𝗋3 leaving 𝗒 is accidentally
issed, i.e., < −, 𝐶𝗒, 𝗋3> (𝖼𝗁𝗀′) was ‘‘missed’’ (five changes remaining),

s illustrated in Fig. 1. We call it ‘‘missed’’ here because it is caused by
he RFID missing read problem.

When one conducts constraint checking on the context pool upon
ach context change (as the individual checking illustrates in Fig. 1)
gainst the aforementioned 𝖲𝗅𝗈𝖼 constraint, a context inconsistency inc1
ould be detected at 𝑃4 (suggesting robot 𝗋3 in both warehouses 𝗑 and

). Incremental checking can work to speed up the checking upon each

ontext change.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Fig. 1. An illustrative example (𝑃𝑖 is the evolving context pool after each context
change).

Fig. 2. Two structures of consistency constraints.

If one applies concurrent checking, multiple context changes have to
be considered for parallelism. Then these changes are applied together
and checked as a whole (as the whole checking illustrates in Fig. 1).
However, checking the final context pool 𝑃5 would report no incon-
sistency. The inconsistency inc1 is missed (or kept hidden in constraint
checking) due to the interference between 𝖼𝗁𝗀4 and 𝖼𝗁𝗀5. This context
inconsistency is missed due to checking certain context changes as a
whole, and it is a problem with the constraint checking itself. We ex-
plained it by ‘‘(the inconsistency) kept hidden in constraint checking’’,
implying that the inconsistency missing is caused by improper grouping
of context changes (to be explained later). Therefore, we consider the
sequence of these five changes invalid for checking together. Then
our first question (challenge) arises: How does one compose constraint
checking tasks that both maximize the parallelism (i.e., involving more
context changes) and guarantee the validity (i.e., inconsistency never made
hidden)? Fusing incremental checking and concurrent checking together
(or fusion checking) has to answer this question.

Now suppose that we have obtained a valid constraint checking
task, which involves four context changes (𝖼𝗁𝗀1, 𝖼𝗁𝗀2, 𝖼𝗁𝗀3,
𝖼𝗁𝗀4). Then, how can one realize both incremental checking and con-
current checking on these changes? The former handles these changes
in turn according to their temporal orders, while the latter parallelizes
the handling of these changes without any temporal order. This could
induce natural logical conflicts (e.g., considering that change 𝖼𝗁𝗀3 is to
add an element deleted by 𝖼𝗁𝗀2).

To alleviate the complexity, one might consider grouping context
changes according to different contexts they relate to, e.g., partition-
ing context changes into context 𝐶𝗑-related changes and 𝐶𝗒-related
changes. Still, checking the two groups concurrently may be inter-
twined. For a consistency constraint illustrated in Fig. 2(a) with a
parallel structure, it could be possible to handle the two groups of
context changes concurrently. However, if the constraint has a nested
structure as illustrated in Fig. 2(b), the two groups of changes cer-
tainly have intertwined impacts on the constraint (i.e., depends-on or
subsumed), as concurrent checking would induce unexpected conse-
quences. Therefore, we have the second question (challenge): How can
fusion checking work correctly?
3

2.3. Problem formulation

We formulate the preceding two questions (challenges) into two
problems, namely, what-correctness and how-correctness.

Given a sequence of context changes under checking, (𝑐ℎ𝑔1, 𝑐ℎ𝑔2,
. . .), 𝑃𝑖 represents the evolving context pool after applying change 𝑐ℎ𝑔𝑖
to existing contexts in pool 𝑃𝑖−1. 𝑃𝑖 is the collection of all contexts
interesting to the concerned application at time 𝑡𝑖 (𝑃0 is the initial
pool at time 𝑡0). To be specific, we have used ideal_chk(𝑃𝑖, 𝑠) and
chk(𝑃𝑖, 𝑠) to denote the checking functionalities provided by the ideal
checking and our fusion checking, respectively, which return reported
inconsistencies as the results when examining the contexts in 𝑃𝑖 against
constraint 𝑠. The what-correctness requests that our fusion checking
should produce the same checking results by checking context changes
as a whole, as compared to checking them individually. That is, it
should carefully decide what context changes to check as a whole, so as
to avoid any interference inside these changes. Given a checking task
(𝑇 = (𝑐ℎ𝑔𝑚, 𝑐ℎ𝑔𝑚+1,… , 𝑐ℎ𝑔𝑛)), the what-correctness is as follows:

𝖼𝗁𝗄(𝑃𝑛, 𝑠) =
𝑛
⋃

𝑖=𝑚
𝖼𝗁𝗄(𝑃𝑖, 𝑠) (1)

The how-correctness requests that our fusion checking should pro-
duce the same checking results by fusing incremental and concur-
rent checking together, as compared to checking directly (e.g., by en-
tire (Nentwich et al., 2002), incremental (Xu et al., 2010), or concurrent
checking (Xu et al., 2013)). It is as follows:

𝖼𝗁𝗄(𝑃𝑛, 𝑠) = 𝗂𝖽𝖾𝖺𝗅_𝖼𝗁𝗄(𝑃𝑛, 𝑠) (2)

Our fusion checking addresses the two correctness problems in the next
section.

3. Methodology

3.1. Approach overview

Fig. 3 overviews our fusion checking (INFuse) approach. It con-
sists of two parts, namely, WHAT-TO-CHECK and HOW-TO-CHECK,
targeting at our preceding two challenges, respectively. The first part
decides boundaries of context changes that are valid to check as a whole
(Section 3.2), and the second part realizes the fusion of incremental and
concurrent checking (Section 3.3).

In the first part, INFuse analyzes the impacts of context changes of
different types, examines what impacts would cause context inconsis-
tencies hidden, and derives validity criteria for deciding what context
changes to group together. In the second part, INFuse checks grouped
context changes as a whole using its own incremental-concurrent fusion
semantics for inconsistency detection.

3.2. WHAT-TO-CHECK: Task arrangement

INFuse decides proper boundaries in a sequence of context changes,
so that each decided group of changes are valid to check as a whole.
‘‘Valid’’ means that no inconsistency would be hidden in the constraint
checking. Each valid group of context changes composes a constraint
checking task.

To decide the validity, we would first investigate the impacts of
different context changes on the checking of a given consistency con-
straint. Specifically, if a context change can cause the constraint’s
evaluation from True to False, it tends to expose an inconsistency.
Otherwise, the change can cause the constraint’s evaluation from False
to True, and it tends to hide an inconsistency. The insight of INFuse
is to analyze and avoid the combination of such two context changes
(otherwise, the first inconsistency might thus become hidden), but
the challenge is that INFuse has to decide it before actual evaluation.

Later, based on such impact analysis, INFuse derives validity criteria

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Fig. 3. Overview of our INFuse approach.
Fig. 4. Example of a universal formula.

for constraint checking tasks, and arranges context changes into proper
groups.

We elaborate on our idea in three steps.
Step 1: Impact analysis. We now model more precisely a context

change in a form of < type, context, truthvalue >. A truth value has only
two values, i.e., True and False. When we talk about the truth value
of a consistency constraint, it must be one of them. Nevertheless, when
we model the impact of a context change to the evaluation result of
a constraint, we have to distinguish two cases (already knowing the
truth value of a certain formula vs. not knowing yet). Such treatment
appears only during the impact analysis, and will not affect final truth
values. Thus, truthvalue here is either a specific truth value (T or F) or
a unknown truth value (U).

Then all context changes can be partitioned into four cases: <+,
𝐶, U>, < −, 𝐶, T>, < −, 𝐶, F>, and < −, 𝐶, U>. Here, <+, 𝐶, U>
denotes an addition change to context 𝐶, with its associated formula
not evaluated yet (U: Unevaluated); < −, 𝐶, T> denotes a deletion
change to context 𝐶, with its associated formula previously evaluated
to True (T: True; F: False). For example, consider constraint ∀𝑣 ∈
𝐶(𝑏𝑓𝑢𝑛𝑐(𝑣)) and context 𝐶 = {𝗋1, 𝗋2} as illustrated in Fig. 4 (truth values
annotated). The impact of any addition change (e.g., <+, 𝐶, 𝗋3>) can
be represented by <+, 𝐶, U> since the newly element 𝗋3 has not been
evaluated yet for 𝑏𝑓𝑢𝑛𝑐. The impact of a deletion change has three cases
according to the previous truth value of the element to delete for 𝑏𝑓𝑢𝑛𝑐:
(1) < −, 𝐶, T>, if the element to delete has been evaluated to True,
e.g., < −, 𝐶, 𝗋2>; (2) < −, 𝐶, F>, if the element has been evaluated to
False, e.g., < −, 𝐶, 𝗋1>; (3) < −, 𝐶, U>, when the element is just added
and has not been evaluated yet, e.g., < −, 𝐶, 𝗋3>.

We note that only universal and existential formulas are associated
with contexts in consistency constraints, and thus context changes
directly affect such formulas (named base formulas). Consider our pre-
ceding constraint 𝖲𝗅𝗈𝖼 (Section 2.1). Change < −, 𝐶𝗒, 𝗋2> directly
affects the constraint’s existential quantifier part (∃𝑣𝗒 ∈ 𝐶𝗒) and makes
formula ∃𝑣𝗒 ∈ 𝐶𝗒(𝚂𝚊𝚖𝚎(𝑣𝗑, 𝑣𝗒)) its base formula. In our illustrative
example in Fig. 1, 𝖼𝗁𝗀1, 𝖼𝗁𝗀3 and 𝖼𝗁𝗀4 are three addition changes and
all belong to the impact case <+, 𝐶𝗑, U> or <+, 𝐶𝗒, U>. Suppose that
the constraint has been evaluated on 𝑃0. Then 𝖼𝗁𝗀2 belongs to the case
of < −, 𝐶𝗒, F> and 𝖼𝗁𝗀5 belongs to < −, 𝐶𝗑, U>.

Next we analyze how a context change produces its impact (a.k.a.
base impact) to the concerned base formula, and then track the impact
4

to the whole constraint (a.k.a. overall impact) containing this formula.
Table 1
Base impact.

Context change ∀𝑣 ∈ 𝐶(𝑓) ∃𝑣 ∈ 𝐶(𝑓)

<+ , 𝐶, U> {𝗆𝖳𝖳, 𝗆𝖳𝖥, 𝗆𝖥𝖥} {𝗆𝖳𝖳, 𝗆𝖥𝖳, 𝗆𝖥𝖥}
<-, 𝐶, T> {𝗆𝖳𝖳, 𝗆𝖥𝖥} {𝗆𝖳𝖳, 𝗆𝖳𝖥}
<-, 𝐶, F> {𝗆𝖥𝖳, 𝗆𝖥𝖥} {𝗆𝖳𝖳, 𝗆𝖥𝖥}
<-, 𝐶, U> {𝗆𝖳𝖳, 𝗆𝖥𝖳, 𝗆𝖥𝖥} {𝗆𝖳𝖳, 𝗆𝖳𝖥, 𝗆𝖥𝖥}

The base impact has four kinds, namely, 𝗆𝖳𝖳, 𝗆𝖳𝖥, 𝗆𝖥𝖳, and 𝗆𝖥𝖥,
representing the truth value of a formula keeping True, changing from
True to False, from False to True, and keeping False, respectively.
Table 1 lists all base impacts that can be produced by each particular
context change to each possible base formula. Take the universal
formula ∀𝑣 ∈ 𝐶(𝑓) as an example. Change <+, 𝐶, U> can produce
all impacts except 𝗆𝖥𝖳, because adding an element into a context can
never make the universal formula evaluated from False to True, while
< −, 𝐶, T> can produce only 𝗆𝖳𝖳 and 𝗆𝖥𝖥, because deleting an element
from a context with truth value of True can never make the universal
formula evaluated from True to False or from False to True. Other
cases can be explained similarly.

Then we follow the tracking rules in Fig. 5 to decide how the overall
impact of a particular context change on a consistency constraint
depends on the base impact of this change on its associated base
formula.

Take universal formula 𝑔 ∶= ∀𝑣 ∈ 𝐶(𝑓) for example. We consider
all four impacts: (1) if a change has impact 𝗆𝖳𝖳 on 𝑓 , it leads to 𝑔
remaining its previous truth value, i.e., having impact 𝗆𝖳𝖳 or 𝗆𝖥𝖥;
(2) if the change has impact 𝗆𝖳𝖥, it can cause 𝑔 evaluated to False,
i.e., having impact 𝗆𝖳𝖥 or 𝗆𝖥𝖥; (3) if the change has impact 𝗆𝖥𝖥, it
makes 𝑔 keep evaluated to False, i.e., having impact 𝗆𝖥𝖥; (4) if the
change has impact 𝗆𝖥𝖳, it can cause 𝑔 to keep evaluated to False or
from False to True, i.e., having impact 𝗆𝖥𝖥 or 𝗆𝖥𝖳. Combining all cases
together, the impact on the universal formula 𝑔 should be impact(𝖿)
∪{𝗆𝖥𝖥}. Recursively, one can continue to track the impact down to
formula 𝑓 . If the tracking already reaches the base formula the specific
change concerns, then the tracking can terminate with the associated
base impact. Other tracking rules can be explained similarly.

For example, consider context change 𝖼𝗁𝗀1 =<+, 𝐶𝗒, 𝗋3> in Fig. 1.
We model it by <+, 𝐶𝗒, 𝖴>, and analyze its overall impact on constraint
𝖲𝗅𝗈𝖼 as follows:

𝗂𝗆𝗉𝖺𝖼𝗍(𝖼𝗁𝗀1,∀𝑣𝗑 ∈ 𝐶𝗑(𝚗𝚘𝚝(∃𝑣𝗒 ∈ 𝐶𝗒(𝚂𝚊𝚖𝚎(𝑣𝗑, 𝑣𝗒)))))

= 𝗂𝗆𝗉𝖺𝖼𝗍(𝖼𝗁𝗀1, 𝚗𝚘𝚝(∃𝑣𝗒 ∈ 𝐶𝗒(𝚂𝚊𝚖𝚎(𝑣𝗑, 𝑣𝗒)))) ∪ {𝗆𝖥𝖥}

= 𝖿 𝗅𝗂𝗉𝖲𝖾𝗍(𝗂𝗆𝗉𝖺𝖼𝗍(𝖼𝗁𝗀1,∃𝑣𝗒 ∈ 𝐶𝗒(𝚂𝚊𝚖𝚎(𝑣𝗑, 𝑣𝗒)))) ∪ {𝗆𝖥𝖥}

= 𝖿 𝗅𝗂𝗉𝖲𝖾𝗍(𝖻𝖺𝗌𝖾_𝗂𝗆𝗉𝖺𝖼𝗍(𝖼𝗁𝗀1,∃)) ∪ {𝗆𝖥𝖥}

= 𝖿 𝗅𝗂𝗉𝖲𝖾𝗍({𝗆𝖳𝖳,𝗆𝖥𝖳,𝗆𝖥𝖥}) ∪ {𝗆𝖥𝖥}

= {𝗆𝖥𝖥,𝗆𝖳𝖥,𝗆𝖳𝖳}

After analyzing the overall impact of a context change, we dy-
namically update the evaluation situation of the formulas directly or
indirectly affected by this context change, in order to model its next

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

c
a

D
t
a
n

Fig. 5. Tracking rules.
D
i
(
𝑠

D
a
i
i

a
t
H

a

context change precisely. For example, consider the context pool 𝑃0
in Fig. 1, the universal formula associated with 𝗋1 and the existential
formula associated with 𝗋2 are both evaluated as True because there
is no inconsistency. After analyzing context change 𝖼𝗁𝗀1 = <+, 𝐶𝗒,
𝗋3>, the existential formula associated with 𝗋3 is unevaluated, changing
the evaluation of universal formula associated with 𝗋1 from True to
Unevaluated. In this way, the overall impacts of changes 𝖼𝗁𝗀2, 𝖼𝗁𝗀3,
𝖼𝗁𝗀4, and 𝖼𝗁𝗀5 in Fig. 1 can be obtained similarly, i.e., {𝗆𝖳𝖳, 𝗆𝖥𝖥}, {𝗆𝖳𝖳,
𝗆𝖳𝖥, 𝗆𝖥𝖥}, {𝗆𝖳𝖳, 𝗆𝖳𝖥, 𝗆𝖥𝖥}, and {𝗆𝖳𝖳, 𝗆𝖥𝖳, 𝗆𝖥𝖥}.

Step 2: Validity criterion derivation. With analyzed impacts of
ontext changes, we proceed to classify them into three categories
ccording to how they affect the detection of context inconsistencies.

efinition 1 (Inc-Exposing Change). Given a consistency constraint 𝑠, if
he overall impact of a context change contains 𝗆𝖳𝖥 but no 𝗆𝖥𝖳, it is
n inc-exposing change (or E-change), suggesting possibly exposing a
ew inconsistency for 𝑠.
5

s

efinition 2 (Inc-Hiding Change). Given a constraint 𝑠, if the overall
mpact of a change contains 𝗆𝖥𝖳 but no 𝗆𝖳𝖥, it is an inc-hiding change
or H-change), suggesting possibly hiding an existing inconsistency for
.

efinition 3 (Inc-Irrelevant Change). Given a constraint 𝑠, if the over-
ll impact of a change contains neither 𝗆𝖥𝖳 nor 𝗆𝖳𝖥, it is an inc-
rrelevant change (or I-change), suggesting irrelevant to detecting any
nconsistency.

Note that no context change has both types 𝗆𝖥𝖳 and 𝗆𝖳𝖥, since (1)
ny base impact contains at most one such type (Table 1), and (2)
racking rules never breaks this property (Fig. 5). Therefore, E-change,
-change, and I-change are complete.

Based on the above definitions, if a constraint checking task contains
ny ordered E-change (with 𝗆𝖳𝖥) and H-change (with 𝗆𝖥𝖳) pair in its
equence of context changes, it is invalid to check these changes as a

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

a
E
t

c
a

n

𝑇
(
T

F
o

t
i
(
e
t
c
C
𝑐
c

r
t

T

c
a
t

𝖼

a
T
f

Algorithm 1: Task arrangement
Input : set of consistency constraints 𝑆, new context change

𝑐ℎ𝑔𝑛𝑒𝑤
Output: set of consistency constraints 𝑆 (updated)

1 for each 𝑠 ∈ 𝑆 do
2 𝑝 = impact (𝑐ℎ𝑔𝑛𝑒𝑤, 𝑠);
3 if 𝑝 contains mFT then
4 𝑐ℎ𝑔𝑛𝑒𝑤.𝑡𝑦𝑝𝑒 = H-change;
5 else if 𝑝 contains mTF then
6 𝑐ℎ𝑔𝑛𝑒𝑤.𝑡𝑦𝑝𝑒 = E-change;
7 else
8 𝑐ℎ𝑔𝑛𝑒𝑤.𝑡𝑦𝑝𝑒 = I-change;
9 if 𝑐ℎ𝑔𝑛𝑒𝑤.𝑡𝑦𝑝𝑒 == H-change then
10 for each change 𝑐ℎ𝑔 in 𝑠.𝑇 𝑎𝑠𝑘 do
11 if 𝑐ℎ𝑔.𝑡𝑦𝑝𝑒 == E-change then
12 fusionchecking(𝑠.𝑇 𝑎𝑠𝑘, 𝑠);
13 𝑠.𝑇 𝑎𝑠𝑘.clear();
14 break;

15 𝑠.𝑇 𝑎𝑠𝑘 ← append(𝑐ℎ𝑔𝑛𝑒𝑤);
16 return 𝑆;

whole (i.e., inconsistency possibly hidden). Based on this observation,
we derive our validity criterion as follows:

Definition 4 (Validity Criterion). Given a constraint checking task with
sequence of context changes, if the sequence contains any ordered

-change and H-change pair (either contiguous or not), it is an invalid
ask; otherwise, valid.

Consider our preceding illustrative example in Fig. 1. Context
hanges 𝖼𝗁𝗀1 (<+, 𝐶𝗒, U>), 𝖼𝗁𝗀3 (<+, 𝐶𝗒, U>), and 𝖼𝗁𝗀4 (<+, 𝐶𝗑, U>)
ll have the 𝗆𝖳𝖥 impact (i.e., E-change), change 𝖼𝗁𝗀5 (< −, 𝐶𝗒, U>) has

the 𝗆𝖥𝖳 impact (i.e., H-change), and the remaining change 𝖼𝗁𝗀2 has
either of them (i.e., I-change).

Then, consider two tasks: 𝑇1 = (𝖼𝗁𝗀1, 𝖼𝗁𝗀2, 𝖼𝗁𝗀3, 𝖼𝗁𝗀4, 𝖼𝗁𝗀5), and
2 = (𝖼𝗁𝗀1, 𝖼𝗁𝗀2, 𝖼𝗁𝗀3, 𝖼𝗁𝗀4). 𝑇1 contains an E-change and H-change
𝖼𝗁𝗀5) pair, thus invalid. 𝑇2 does not contain any such pair, thus valid.
he results match our earlier analysis in Section 2.2.
Step 3: Task arrangement. With the above validity criterion, IN-

use can compose constraint checking tasks with valid context changes
nly.

Algorithm 1 explains how to arrange valid constraint checking
asks. Given a consistency constraint 𝑠, when context change 𝑐ℎ𝑔𝑛𝑒𝑤
s collected, INFuse first analyzes its impact on 𝑠 to decide its category
Lines 2–8), i.e., E-/H-/I-change. Then, if 𝑐ℎ𝑔𝑛𝑒𝑤 is an H-change, INFuse
xamines whether there is any existing E-change 𝑐ℎ𝑔 in the current
ask. If yes (Line 11), INFuse conducts fusion checking with all existing
hanges in the task (details to be discussed later in the HOW-TO-
HECK part) (Line 12), and finishes this task (𝑠’s new task starts with
ℎ𝑔𝑛𝑒𝑤, Lines 13–14). Otherwise, INFuse keeps maximizing a constraint
hecking task until any possible E-change and H-change pair occurs.

We give the following theorem to guarantee that INFuse always
eturns the same checking result by its whole checking of thus arranged
asks, as compared to individual checking.

heorem 1 (WHAT-Correctness). Given any consistency constraint and
associated context pool, INFuse produces the same result for its arranged
valid context changes, no matter it checks these changes as a whole or
individually.

Proof. Let the concerned constraint be 𝑠 with the associated context
pool 𝑃 . INFuse’s arranged valid context changes compose a constraint
6

0

hecking task 𝑇 = (𝑐ℎ𝑔1, ⋯ , 𝑐ℎ𝑔𝑛). 𝑃𝑖 represents the context pool right
fter applying context change 𝑐ℎ𝑔𝑖. As discussed in Section 2.3, in order
o prove this WHAT-Correctness theorem, we actually aim to prove:

𝗁𝗄(𝑃𝑛, 𝑠) =
𝑛
⋃

𝑖=1
𝖼𝗁𝗄(𝑃𝑖, 𝑠) (3)

To get Eq. (3), one can prove that checking results for 𝑃0, . . . , 𝑃𝑛−1
re all subsets of the checking result for the checking result for 𝑃𝑛.
his target (i.e., the following Eq. (4)) serves as a sufficient condition
or Eq. (3), i.e.,
𝑛−1
⋃

𝑖=1
𝖼𝗁𝗄(𝑃𝑖, 𝑠) ⊆ 𝖼𝗁𝗄(𝑃𝑛, 𝑠) (4)

We use reduction to absurdity by assuming that Eq. (4) does not
hold. That is, there is an 𝑖𝑛𝑐𝑥 satisfying:

𝑖𝑛𝑐𝑥 ∈ (
𝑛−1
⋃

𝑖=1
𝖼𝗁𝗄(𝑃𝑖, 𝑠)) ∖ 𝖼𝗁𝗄(𝑃𝑛, 𝑠) (5)

Suppose 𝑖𝑛𝑐𝑥 is first exposed by 𝑐ℎ𝑔𝑗 (1 ≤ 𝑗 < 𝑛), i.e., 𝑖𝑛𝑐𝑥 ∈ 𝖼𝗁𝗄(𝑃𝑗 , 𝑠)
and 𝑖𝑛𝑐𝑥 ∉ 𝖼𝗁𝗄(𝑃𝑗−1, 𝑠). Due to our definition of E/H/I-changes, 𝑐ℎ𝑔𝑗 is
an E-change. Moreover, since 𝑖𝑛𝑐𝑥 ∉ 𝖼𝗁𝗄(𝑃𝑛, 𝑠), it should be hidden no
later than 𝑐ℎ𝑔𝑛 is applied and checked. Suppose 𝑖𝑛𝑐𝑥 is actually hidden
by 𝑐ℎ𝑔𝑘 (𝑗 < 𝑘 ≤ 𝑛), i.e., 𝑖𝑛𝑐𝑥 ∉ 𝖼𝗁𝗄(𝑃𝑘, 𝑠). By definition, 𝑐ℎ𝑔𝑘 must be
an H-change. Therefore, we can derive that:

𝑖𝑛𝑐𝑥 ∈ 𝖼𝗁𝗄(𝑃𝑗 , 𝑠), (6)

𝑖𝑛𝑐𝑥 ∉ 𝖼𝗁𝗄(𝑃𝑘, 𝑠). (7)

This actually denotes that 𝑖𝑛𝑐𝑥 was first exposed by an E-change
𝑐ℎ𝑔𝑗 , and then hidden by a H-change 𝑐ℎ𝑔𝑘, which clearly violates the
nonexistence of an ordered E-change and H-change in any constraint
checking task according to the validity criterion (Definition 4). There-
fore, this leads to a contradiction to our assumption, so Eq. (4) holds
and thus Eq. (3) can be easily proved as such. This completes our
proof. □

In the following, we explain how INFuse fuses incremental and
concurrent checking to efficiently and soundly handle valid context
changes in each task.

3.3. HOW-TO-CHECK: Check fusion

Given a valid constraint checking task, INFuse fuses incremental
and concurrent checking and treats all context changes in the task
as a whole for efficiency. INFuse first decomposes all changes in a
task into several subsets based on their nature, and then conducts
constraint checking by two steps, namely, truth value evaluation and
link generation, which examines whether the concerned consistency
constraint is violated and why the violation, if any, occurs.

Step 4: Task decomposition. INFuse first decomposes all context
changes (addition or deletion) in the given constraint checking task into
three subsets, namely, truly added set (or 𝐴𝑆𝑒𝑡 for short), truly deleted
set (𝐷𝑆𝑒𝑡) and updated set (𝑈𝑆𝑒𝑡) for each consistency constraint.
They contain truly added elements (i.e., not deleted later), truly deleted
elements (not added back later) and updated elements (i.e., deleted
first and added back), respectively. Suppose that context 𝐶 eventually
becomes 𝐶 ′ after applying all relevant changes in task 𝑇 . Then the
three sets can be calculated: 𝐴𝑆𝑒𝑡 = 𝐶 ′ ∖ 𝐶, 𝐷𝑆𝑒𝑡 = 𝐶 ∖ 𝐶 ′, and
𝑈𝑆𝑒𝑡 = {𝑒|𝑒 ∈ 𝐶 ∩ 𝐶 ′ ∧ ∃ 𝑐ℎ𝑔 ∈ 𝑇 (𝑐ℎ𝑔 = ⟨+∕−, 𝐶, 𝑒⟩)}.

We define the Affected function to indicate whether a formula itself
or its subformula is affected by the context changes in a constraint
checking task. Given a formula from a consistency constraint, the
Affected function returns T (means True) if and only if the formula
itself or its subformula references a context involved in the 𝐴𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡

or 𝑈𝑆𝑒𝑡 associated with this constraint; otherwise, F (means False).

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

t
s
l
i
T
d
g

I

f
t

Fig. 6. INFuse’s partial truth value evaluation semantics for the universal formula.
Fig. 7. INFuse’s entire truth value evaluation semantics for the universal formula.
INFuse would rely on the three subsets to decide when to switch be-
ween incremental checking (by partial checking
emantics later) and concurrent checking (by entire checking semantics
ater). The checking is composed of the truth value evaluation (return-
ng T or F) and link generation (returning links (Xu et al., 2010)).
he following gives an example link for our preceding inconsistency
etected in the illustrative example (more explanation about link is
iven later in Step 6): (𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽, {(𝑣𝗑 = 𝗋3), (𝑣𝗒 = 𝗋3)}).
Step 5: Truth value evaluation. We use 𝜏INFuse[𝑠] to represent

NFuse’s truth value evaluation on consistency constraint 𝑠. 𝜏INFuse starts
with incremental checking by invoking its partial checking semantics,
i.e., 𝜏INFuse[𝑠] = 𝜏𝗉𝖺𝗋𝗍𝗂𝖺𝗅[𝑠]𝛼 . Here, 𝛼 is the variable assignment, which is
empty at the beginning and updated later by the bind function when
evaluating universal or existential subformula in constraint 𝑠 to add
new variable bindings into 𝛼. In the following, we take the universal
ormula as an example to explain INFuse’s truth value evaluation. A full
reatment of all formula types is accessible at our Appendix.

Consider universal formula ∀𝑣 ∈ 𝐶(𝑓). Suppose that all context
changes in a constraint checking task have been decomposed into
related 𝐴𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡, and 𝑈𝑆𝑒𝑡. Fig. 6 gives INFuse’s partial truth value
evaluation semantics (five cases).

(1) If no change affects the universal formula or its subformula, then
this formula’s previous truth value 𝜏0 is reusable.

(2) If the changes affect the universal formula only by adding new
elements into context 𝐶 only, then this formula’s previous truth
value 𝜏0 is reusable, and one can update it with evaluation
results of the new elements from 𝐴𝑆𝑒𝑡, by the 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾 function
in Fig. 8 and 𝜏𝖾𝗇𝗍𝗂𝗋𝖾 semantics in Fig. 7 (‘‘entire’’ due to new
elements (no reusable results); concurrent evaluations may be
applied (explained later)).

(3) If the changes affect the universal formula only by deleting ex-
isting elements from, or updating them in, context 𝐶, then the
evaluation results of the remaining elements in 𝐶 (i.e., 𝐶 ∖(𝐴𝑆𝑒𝑡∪
𝑈𝑆𝑒𝑡)) are reusable, and those of the other elements should be
calculated by the 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾 function similarly.

(4) If the changes affect the subformula only, then the evaluation
results of all elements in 𝐶 should be updated by the 𝖾𝗏𝖺𝗅𝗉𝖺𝗋𝗍𝗂𝖺𝗅
function in Fig. 8 (‘‘partial’’ due to elements not changed (some
reusability possible)).
7

Fig. 8. Semantics of the eval functions (entire and partial checking).

(5) Otherwise, the changes affect both the universal formula and
its subformula, then one has to update the evaluation results
of unchanged elements (i.e., 𝐶 ∖(𝐴𝑆𝑒𝑡 ∪ 𝑈𝑆𝑒𝑡)) by the 𝖾𝗏𝖺𝗅𝗉𝖺𝗋𝗍𝗂𝖺𝗅
function and those of changed elements ((𝐴𝑆𝑒𝑡 ∪ 𝑈𝑆𝑒𝑡)) by the
𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾 function.

We note that in the 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾 and the 𝖾𝗏𝖺𝗅𝗉𝖺𝗋𝗍𝗂𝖺𝗅 functions, concurrent
checking can be applied to conduct parallel evaluations as in Fig. 8 (‘‘∥’’
means concurrent and ‘‘;’’ means sequential), since these evaluations
are independent of each other.

Concurrent points are the places where concurrent checking starts
with multi-threading support. As illustrated in Fig. 8 and later Fig. 11,
concurrent points are associated with universal or existential formulas,
as their subformulas would incur similar checking workloads. Consider
our preceding consistency constraint 𝖲𝗅𝗈𝖼 and a checking task 𝑇 =
(𝖼𝗁𝗀1, 𝖼𝗁𝗀2, 𝖼𝗁𝗀3, 𝖼𝗁𝗀4). These changes affect both the constraint’s uni-
versal formula (i.e.,
∀𝑣𝑥 ∈ 𝐶𝑥) and its inner existential formula (i.e., ∃𝑣𝑦 ∈ 𝐶𝑦) in 𝖲𝗅𝗈𝖼.
They are both concurrent point candidates for starting concurrent
checking. We will discuss how to decide proper concurrent points later
in Section 3.4.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

I
s

b
T
t
v
R

Fig. 9. INFuse’s partial link generation semantics for the universal formula.
Fig. 10. INFuse’s entire link generation semantics for the universal formula.
Fig. 11. Semantics of the gen functions (entire and partial checking).

Step 6: Link generation.Similarly, link generation INFuse[𝑠] in
NFuse starts with incremental checking by invoking its partial checking
emantics, i.e., INFuse[𝑠] = 𝗉𝖺𝗋𝗍𝗂𝖺𝗅[𝑠]𝛼 .

Links are generated to explain why a consistency constraint has
een violated or satisfied, in a form of (linkType, variable assignments).
he linkType is violated or satisfied, corresponding to the evaluated
ruth value of False or True, and variable assignments disclose that the
iolation or satisfaction occurs under what kind of variable bindings.
ecalling our preceding example of link (𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽, {(𝑣𝗑, 𝗋3), (𝑣𝗒, 𝗋3)}), it

means that the preceding constraint 𝖲𝗅𝗈𝖼 is violated when variable 𝑣𝗑
and variable 𝑣𝗒 are both assigned with 𝗋3. Similarly, Fig. 9 gives INFuse’s
partial link generation semantics for the universal formula (five cases
simiplified; a full treatment of all formula types is accessible at our
Appendix).
8

(1) If no change affects the universal formula or its subformula, this
formula’s previous link result 0 is reusable.

(2) If the changes affect the universal formula only by adding new
elements, this formula’s previous link result 0 is reusable and
one can update it with the link results of the new elements, by the
𝗀𝖾𝗇𝖾𝗇𝗍𝗂𝗋𝖾 function in Fig. 11 and 𝖾𝗇𝗍𝗂𝗋𝖾 semantics in Fig. 10. Here,
the ⊗ operator concatenates the base link set of the universal
formula (i.e., {(𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽, {𝑣, 𝑦𝑗})} and link set generated by the
subformula (i.e., 𝑙𝑗) by applying a Concatenate function to the
link pairs formed by link (𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽, {𝑣, 𝑦𝑗}) and every link from 𝑙𝑗 .
The Concatenate function combines the two links with the same
linkType into a new link, which consists of this linkType and the
union of all concerned variable assignments from the two links.
Their formal definitions can be found in Appendix.

(3) If the changes affect the universal formula only by deleting or
updating existing elements, the link results of the remaining
elements are reusable, and those of the other elements should be
calculated by the 𝗀𝖾𝗇𝖾𝗇𝗍𝗂𝗋𝖾 function similarly.

(4) If the changes affect the subformula only, the link results of all
elements should be updated by the 𝗀𝖾𝗇𝗉𝖺𝗋𝗍𝗂𝖺𝗅 function in Fig. 11.

(5) Otherwise, the changes affect both the universal formula and
its subformula, one has to update the link results of unchanged
elements by the 𝗀𝖾𝗇𝗉𝖺𝗋𝗍𝗂𝖺𝗅 function and those of changed elements
by the 𝗀𝖾𝗇𝖾𝗇𝗍𝗂𝗋𝖾 function.

Similarly, the 𝗀𝖾𝗇𝖾𝗇𝗍𝗂𝗋𝖾 and 𝗀𝖾𝗇𝗉𝖺𝗋𝗍𝗂𝖺𝗅 functions can work concurrently
for efficiency at concurrent points. In the following, we give the sec-
ond theorem to guarantee that INFuse soundly fuses incremental and
concurrent checking semantics.

Theorem 2 (HOW-Correctness). Given any consistency constraint and
associated context pool, INFuse produces the same result by its check fusion
semantics, as existing constraint checking techniques do.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Proof. Since the semantic structures of true value evaluation and
link generation are highly consistent, we only give our proof when it
comes to the truth value semantics. We here prove INFuse’s checking
correctness of truth value evaluation semantics for all seven formulas
in detail.

Universal formula. We would rely on the checking correctness of
ECC, Con-C, and PCC, and thus, we explain their truth value evaluation
semantics for universal formula briefly here.

Let the universal formula be ∀𝑣 ∈ 𝐶(𝑓) and 𝐶 contains 𝑚 elements
(𝑒1,… , 𝑒𝑚) after applying a context change 𝑐ℎ𝑔. The truth value 𝜏 of
the universal formula is defined as the conjunction of truth values
(𝑡1,… , 𝑡𝑚) of subformula 𝑓 for all elements in 𝐶. ECC evaluates each
𝑡𝑖 in a sequential manner while Con-C evaluates each 𝑡𝑖 concurrently.
PCC considers the effect of 𝑐ℎ𝑔, which can be split into four cases: (a) if
𝑐ℎ𝑔 did not affect the formula at all, each 𝑡𝑖 would remain unchanged,
as well as 𝜏. (b) if 𝑐ℎ𝑔 added the element 𝑒𝑚 into 𝐶, 𝑡1,… , 𝑡𝑚−1 would
remain unchanged, and thus, 𝜏 would be the conjunction of its last
value and 𝑡𝑚 associated with 𝑒𝑚. (c) if 𝑐ℎ𝑔 deleted the element 𝑒𝑚+1
from 𝐶, 𝑡1,… , 𝑡𝑚 would remain unchanged, and thus, 𝜏 would be the
conjunction of them. (d) if 𝑐ℎ𝑔 affected another context related to 𝑓 ,
then all 𝑡𝑖 would need to be reevaluated partially in a similar manner.

We now analyze INFuse’s truth value evaluation semantics for uni-
versal formula to prove its correctness. Firstly, the correctness of the
entire semantics as shown in Fig. 7 is similarly guaranteed by the
correctness of ECC’s semantics due to their similarity. Secondly, Con-
C’s correctness confirms that evaluating truth values concurrently for
independent elements can get the same results as evaluating serially,
which guarantees the correctness of 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾 and 𝖾𝗏𝖺𝗅𝗉𝖺𝗋𝗍𝗂𝖺𝗅. Therefore, we
only specifically analyze the correctness concerning cases of the partial
semantics in Fig. 6:

• Case (1) is exactly the same as case (a) in PCC since it only focuses
on whether the whole formula is affected.

• Case (2) extends the idea of case (b) in PCC to multiple context
changes. These context changes only added elements (𝑦1,… , 𝑦𝑎)
in 𝐶. Therefore, the last truth value (𝜏0) is reusable according to
case (b) in PCC. The correctness of new truth values (𝑡1,… , 𝑡𝑎)
associated with new elements are guaranteed by 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾.

• Case (3) fuses the idea of case (b) and case (c) in PCC and
extends to multiple context changes. Truth values associated with
elements that were not deleted or updated by forthcoming context
changes are reusable according to case (c) in PCC. The correctness
of new truth values (𝑡1,… , 𝑡𝑎+𝑢) associated with new or updated
elements are also guaranteed by 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾.

• Case (4) is exactly the same as case (d) in PCC, since it only
focuses on whether subformula 𝑓 is affected when 𝐶 is not
affected.

• Case (5) fuses the idea of case (b), case (c), and case (d) in
PCC and extends to multiple context changes. The correctness of
truth values (𝑡1,… , 𝑡𝑎+𝑢) associated with new elements or updated
elements are guaranteed by 𝖾𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾. Truth values (𝑡𝑎+𝑢+1,… , 𝑡𝑛)
associated with elements that were not deleted or updated should
be reevaluated partially since subformula 𝑓 is affected according
to case (d) in PCC. their correctness are guaranteed by 𝖾𝗏𝖺𝗅𝗉𝖺𝗋𝗍𝗂𝖺𝗅.

Existential formula. Since INFuse’s truth value evaluation seman-
tics for the existential formula is quite similar to that for the universal
formula, the correctness of INFuse’s truth value evaluation semantics
for the existential formula can be proved follow the same procedure,
i.e., the correctness of the entire semantics can be guaranteed by ECC’s
correctness, Con-C’s correctness supports the eval𝖾𝗇𝗍𝗂𝗋𝖾 and eval𝗉𝖺𝗋𝗍𝗂𝖺𝗅
functions, and the partial semantics can be analyzed similarly.

and, or, and implies formulas. Fig. 12 shows the truth value
evaluation semantics for and formula. The correctness of the entire
semantics for and formula is trivial since it evaluates the truth value
based on the logic of the formula. As for the partial semantics, every
9

Fig. 12. INFuse’s truth value evaluation semantics for and formula.

Fig. 13. INFuse’s truth value evaluation semantics for not formula.

Fig. 14. INFuse’s truth value evaluation semantics for 𝑏𝑓𝑢𝑛𝑐 formula.

and formula has two subformulas, each of which could be affected by
INFuse’s arranged valid context changes. Therefore, INFuse partitions
all situation into four cases. Besides, or and implies formulas can
be proved in the same way.

not formula. Fig. 13 shows the truth value evaluation semantics
for not formula. The entire semantics for not formula is straightfor-
ward and the partial semantics contain two cases since the subformula
of not formula is either affected or not affected.

𝑏𝑓𝑢𝑛𝑐 formula. Fig. 14 shows INFuse’s truth value evaluation se-
mantics for 𝑏𝑓𝑢𝑛𝑐 formula. 𝑏𝑓𝑢𝑛𝑐 formula returns its result as we expect
in the entire semantics and its last truth value is always reusable since
it neither owns any subformula nor references any context.

Therefore, the correctness of truth value evaluation semantics for all
seven formulas are proved, i.e., INFuse can achieve the same truth val-
ues as existing checking techniques. Moreover, the correctness of link
generation semantics can be proved similarly, incurring that INFuse can
achieve the same links as existing checking techniques. As a summary,
INFuse can achieve the same inconsistency checking results as existing
checking techniques. This completes our proof. □

In the following, we explain more realization details on both the
WHAT-TO-CHECK part and the HOW-TO-CHECK part, and analyze its
algorithmic complexity with comparisons to existing techniques.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

a
t
I
t

f
c
𝐷
c
p
t
c
u
d
w
c
s
n
s
f
c
t
r
p
a
a
f

d
c
o
m
(
p
l
t
i
f

A
f
s

t
f
t
t
o
𝗀
c
p
t
t
n
n
a
f
u
w
f

3

b
c

t
c
d

3.4. Infuse realization details

The preceding WHAT-TO-CHECK part decides a group of context
changes that are valid to check together, and the HOW-TO-CHECK part
guides how to complete the truth value evaluation and link generation
for this group of context changes by fusing incremental and concurrent
checking together. In the following, we explain more realization details
in the two parts.

For the WHAT-TO-CHECK part, we explain how to enhance our task
arrangement in practice. Recalling the preceding validity criterion in
Definition 4, the basic idea is that any H-change should not follow an
E-change within the same checking task, so as to avoid any missing
inconsistency. In fact, as long as the inconsistency that may be hidden
by the H-change has been reported in the last checking, this change
can still be followed by any E-change without sacrificing the quality
of checking results. Therefore, by temporarily buffering the context
inconsistencies reported in the last checking, we can ignore such as-
sociated H-changes. Therefore, ‘‘𝑐ℎ𝑔𝑛𝑒𝑤’’ should be reexamined to be
n H-change and at the same time do not relate to any element in
he buffered inconsistencies (Line 9 in Algorithm 1), thus enhancing
NFuse’s task arrangement by potentially enlarging more changes in a
ask in practice.

For the HOW-TO-CHECK part, we explain how to realize the check
usion concretely. Consider a constraint checking task whose included
ontext changes have been decomposed into three sets (namely, 𝐴𝑆𝑒𝑡,
𝑆𝑒𝑡, and 𝑈𝑆𝑒𝑡) for the task’s associated consistency constraint. Re-

alling the preceding INFuse’s semantics in Figs. 8 and 11, the key
oint to start the check fusion is to first decide concurrent points in
he constraint. Our intuition is three-folded: (1) the sub-tasks split at
oncurrent points should be balanced, and this requirement selects
niversal (∀) or existential (∃) formulas to be concurrent point can-
idates, since their subformulas correspond to identical formulas but
ith different variable-value bindings by definition, suggesting similar

hecking workloads (e.g., the example in Fig. 4); (2) each sub-task
hould contain sufficient checking workload, in order to avoid un-
ecessarily large concurrency management cost, and this requirement
elects those higher-layer universal or existential formulas; (3) the
inally decided concurrent points should be those affected by context
hanges (otherwise, their associated results can be reused according
o the preceding partial checking semantics). We combine these three
equirements into Algorithm 2, which eventually decides concurrent
oints to be those top-layer universal or existential formulas that are
ffected by context changes (i.e., involving at least one 𝐴𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡,
nd 𝑈𝑆𝑒𝑡, directly or indirectly, according to the preceding Affected
unction).

The algorithm analyzes a given consistency constraint 𝑠 in a top-
own manner, until it finds all necessary concurrent points that can
over all affected formulas inside this constraint. It starts from the root
f the constraint, i.e., its top formula (𝑠.𝑟𝑜𝑜𝑡), and explores its subfor-
ula(s) to find those first encountered universal or existential formulas

Line 7) that are affected by context changes (Line 6). The exploration
rocess must terminate since each terminal 𝑏𝑓𝑢𝑛𝑐 is enclosed by at
east one universal or existential formula. For example, we consider
he two preceding constraint examples, whose tree-alike structures are
llustrated in Fig. 2. For a constraint like in Fig. 2(a), if the and
ormula’s both subformulas ∀𝑣𝑥 ∈ 𝐶𝑥(𝑓) and ∀𝑣𝑦 ∈ 𝐶𝑦(𝑓) are affected

by context changes, then both of them are considered as concurrent
points; otherwise, if only one subformula is affected, then it is the only
concurrent point. For a constraint like in Fig. 2(b), if both 𝐶𝑥 and 𝐶𝑦
are affected by context changes, only the root formula ∀𝑣𝑥 ∈ 𝐶𝑥(𝑓) is
considered as the concurrent point. Then we further consider our pre-
ceding constraint 𝖲𝗅𝗈𝖼 and its checking task 𝑇 = (𝖼𝗁𝗀1, 𝖼𝗁𝗀2, 𝖼𝗁𝗀3, 𝖼𝗁𝗀4).

lthough both the universal formula (i.e., ∀𝑣𝗑 ∈ 𝐶𝗑) and the existential
ormula (i.e., ∃𝑣𝗒 ∈ 𝐶𝗒) are affected by these changes, INFuse would
10

elect only the universal formula as the concurrent point. i
Algorithm 2: Concurrent points selection
Input : consistency constraint 𝑠
Output: set of 𝑠’s concurrent points 𝑐𝑝𝑆𝑒𝑡

1 𝑐𝑝𝑆𝑒𝑡 = ∅;
2 𝑠𝑡𝑎𝑐𝑘 = emptyStack();
3 𝑠𝑡𝑎𝑐𝑘.push(𝑠.𝑟𝑜𝑜𝑡);
4 while 𝑠𝑡𝑎𝑐𝑘 is not empty do
5 𝑓 = 𝑠𝑡𝑎𝑐𝑘.pop();
6 if Affected(𝑓) == True then
7 if 𝑓 .type == ∀ or 𝑓 .type == ∃ then
8 𝑐𝑝𝑆𝑒𝑡.add(𝑓);
9 else if 𝑓 .type == and or 𝑓 .type == or or 𝑓 .type ==

implies then
10 𝑠𝑡𝑎𝑐𝑘.push(𝑓 .left_subformula);
11 𝑠𝑡𝑎𝑐𝑘.push(𝑓 .right_subformula);
12 else if 𝑓 .type == not then
13 𝑠𝑡𝑎𝑐𝑘.push(𝑓 .subformula);

14 return 𝑐𝑝𝑆𝑒𝑡;

Fig. 15. Syntax and runtime tree examples for the 𝖲𝗅𝗈𝖼 constraint.

With concurrent points decided, INFuse proceeds with its fusion
checking, following the semantics in Figs. 6 and 9. INFuse conducts the
ruth value evaluation and link generation according to encountered
ormula types and conditions (affected function and set value condi-
ions) starting from the constraint’s root formula in a top-down manner,
o either invoke new calculations or reuse existing results (i.e., entire
r partial checking). During this process, when invoking the 𝖾𝗏𝖺𝗅 or
𝖾𝗇 function in Figs. 8 and 11, INFuse would decide whether to start
oncurrent checking according to whether the current formula is a
reviously decided concurrent point. If yes, INFuse exploits the multi-
hreading support to assign each thread with a sub-task (i.e., checking
he concerned subformula with a certain variable assignment). This
aturally fuses concurrent checking into entire or partial checking. If
o, INFuse simply completes sub-tasks sequentially. When all sub-tasks
re completed, their results are merged and propagated to the root
ormula, following the semantics in Figs. 8 and 11. We note that since
pon a sub-task is assigned with a dedicated thread, no further splitting
ould be considered for this sub-task, this treatment makes INFuse’s

usion or incremental and concurrent checking simple and efficient.

.5. Infuse complexity analyses

In the following, we analyze how complex such a fusion checking
ehaves and how it is compared to existing incremental and concurrent
hecking algorithmically.

To facilitate our complexity analysis, we rely on two notions from
he literature (Wang et al., 2021; Xu et al., 2010, 2013) for representing
onsistency constraints, namely, syntax tree and runtime tree. The former
escribes a constraint’s structure in a hierarchical way, as illustrated
n Fig. 15(a), representing our preceding constraint 𝖲 (other partial
𝗅𝗈𝖼

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
examples can be found in Fig. 2). The latter resembles the former
except that it clones some sub-trees with different value assignments for
variables introduced in universal or existential formulas, as illustrated
in Fig. 15(b), where context 𝐶𝗑 contains 𝗋1 and 𝗋3, and 𝐶𝗒 contains 𝗋2
and 𝗋3.

We now analyze INFuse’s HOW-TO-CHECK part, which dominates
the whole computational complexity (the WHAT-TO-CHECK part con-
sists of several simple runtime type checks only). Consider a given
consistency constraint 𝑠, with its checking task consisting of some
context changes. As aforementioned, INFuse decomposes the task into
three sets (i.e., 𝐴𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡, and 𝑈𝑆𝑒𝑡) for each involved context in this
constraint, and conducts the fusion checking with decided concurrent
points. Let the number of context changes be 𝑚 in this task and the
height of constraint 𝑠 be 𝐻 . The height denotes the maximum hops
from a constraint’s syntax tree’s root node to its leaf nodes, e.g., the
height is three in Fig. 15(a). It is easy to observe that the task-to-set
decomposition takes O(𝑚) time, and that the concurrent-point decision
takes O(𝐻) time. In the following, we analyze in detail the complexity
of the kernel fusion checking.

According to the preceding INFuse’s checking realization, we an-
alyze the complexity for completing the sub-task of each arranged
thread starting at a concurrent point (named concurrent cost), and for
merging and propagating intermediate results from concurrent points
up to the root node (named merge cost). We have earlier noted that
concurrent points are universal or existential formulas in a constraint,
and thus they correspond to such nodes in the constraint’s syntax
tree. For example, considering constraint 𝖲𝗅𝗈𝖼 and its checking task
𝑇 = (𝖼𝗁𝗀1, 𝖼𝗁𝗀2, 𝖼𝗁𝗀3, 𝖼𝗁𝗀4), the universal formula (i.e., ∀𝑣𝑥 ∈ 𝐶𝑥) is
the only concurrent point as aforementioned, and thus the root node
in the syntax tree (Fig. 15(a)) corresponds to this concurrent point.
Besides, according to Algorithm 2, no other concurrent point would
exist between a concurrent point and the root node. Therefore, for
a syntax tree’s corresponding runtime tree, its part from concurrent
points to the root node would be exactly the same as that in the
syntax tree. This brings two useful properties: (1) any concurrent point
corresponds to a unique node in both the syntax tree and runtime tree,
and (2) the hops from the root node to any concurrent point are no
more than O(𝐻), implying that the merge cost would be within O(𝐻)
time. Here we note that when analyzing the complexity of constraint
checking upon a consistency constraint (fixed) given a sequence of
context changes (not fixed), we are considering the impact of the
number of these changes as well as their types. With this setting, the
constraint itself never changes, and as such we can consider its height
in the tree structure is a constant. Therefore, we here consider 𝐻 as a
constant, and reduce this cost to be O(1) time, while focusing on the
main cost below.

This leaves us the main challenge of analyzing INFuse’s complexity
in completing the sub-task from a concurrent point. Let a considered
concurrent point be 𝑐, and we analyze the averaged time complexity
for completing its sub-task for one thread (all threads are concurrent).

We consider the sub-tree in constraint 𝑠’s syntax tree with concur-
rent point 𝑐 as the root node of this sub-tree. Let the height of this
sub-tree be ℎ, and it contains totally 𝑘 universal or existential formula
nodes, each associated with a specific context (named 𝑐𝑡𝑥0,… , 𝑐𝑡𝑥𝑘−1).
For ease of presentation, we let 𝑐’s associated context be 𝑐𝑡𝑥0, and
the other 𝑘 − 1 contexts are ordered in a descending order on their
heights (i.e., descending ℎ𝑖 for 𝑐𝑡𝑥𝑖, representing the hops from 𝑐𝑡𝑥𝑖 to
the lowest leaf node), as shown in Fig. 16.

To analyze the averaged complexity, we assume for all contexts in
𝑐’s sub-tree, they: (1) are even distributed (i.e., with different locations
and different heights), and (2) are even affected by context changes
(i.e., with the same probability). For the former, the average height of
all 𝑘 contexts (except 𝑐𝑡𝑥0) is half the sub-tree’s height:

1
𝑘−1
∑

ℎ𝑖 =
ℎ . (8)
11

𝑘 − 1 𝑖=1 2
Fig. 16. Parallel and nested structures in a syntax tree.

Fig. 17. Runtime tree of the parallel structure.

For the latter, since each context is affected by change (i.e., adding
or deleting an element) always with the same probability, each context
(𝑐𝑡𝑥0,… , 𝑐𝑡𝑥𝑘−1) contains the same number (say, 𝑒) of elements.

We note that different constraint structures have different impacts
on the complexity analysis. Therefore, we consider two representative
structures (i.e., parallel and nested), as illustrated in Fig. 16. For the
former, a context is never within the scope of another context, while
for the latter, a context is always within that of a previous context.
We let node 𝑟 be concurrent point 𝑐’s corresponding node in constraint
𝑠’s runtime tree, and the sub-tree with 𝑟 as the root node contain 𝑛0
nodes before applying context changes. Since 𝑐’s associated context
𝑐𝑡𝑥0 contains 𝑒 elements, then each of 𝑟’s sub-tree in the runtime tree
contains 𝑛0

𝑒 nodes. In the following, we analyze for the two structures.
Parallel structure. Consider node 𝑟 (concurrent point 𝑐’s corre-

sponding node in the runtime tree) with the parallel structure, as shown
in Fig. 17.

In the parallel structure, one can approximate the total number of
nodes in one of 𝑟’s sub-trees also by accumulating each context 𝑐𝑡𝑥𝑖’s
sub-tree’s node number (i.e., 𝑂(𝑒 ⋅ ℎ𝑖)). We thus have the following
equation:
𝑘−1
∑

𝑖=1
𝑂(𝑒 ⋅ ℎ𝑖) = 𝑂(

𝑛0
𝑒
). (9)

Then, to analyze the averaged time complexity of conducting IN-
Fuse’s fusion checking for one of 𝑟’s sub-trees (all sub-trees are checked
concurrently by different threads), we consider three representative
cases (i.e., only 𝐴𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡, or 𝑈𝑆𝑒𝑡 changes; other cases in between).

(1) Only 𝐴𝑆𝑒𝑡 changes. Recalling that each context is even affected
by change, thus all contexts’ corresponding 𝐴𝑆𝑒𝑡 should con-
tain the elements for addition with a close magnitude. Let this
number be 𝑂(𝑎). To conduct INFuse’s fusion checking (i.e., truth
value evaluation and link generation), INFuse needs to create
𝑂(𝑎) new sub-trees for node 𝑟 that require entire checking 𝑐𝑡𝑥
0

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
affected, and adjust 𝑂(𝑒) sub-trees for node 𝑟 that require partial
checking (internal contexts also affected). To realize such creation
and adjustment, INFuse assigns dedicated threads, one for each
sub-tree of node 𝑟. Note that adding a new sub-tree is more time-
consuming than adjusting an existing sub-tree since it requires
three parts of jobs (i.e., node creation, truth value evaluation,
and link generation), while adjusting an existing sub-tree requires
only the latter two jobs. Therefore, we analyze the complexity
of adding a new sub-tree to represent those for other sub-trees
(since all are done concurrently, adding a new sub-tree represents
the most complexity). For a newly created sub-tree (with 𝑂(𝑒+ 𝑎)
elements for each internal context, i.e., ∑𝑘−1

𝑖=1 ((𝑒 + 𝑎) ⋅ ℎ𝑖) nodes
in total), each node would be visited three times for the node
creation, truth value evaluation and link generation respectively.
Therefore, the time cost is:

𝑂(3 ⋅
𝑘−1
∑

𝑖=1
((𝑒 + 𝑎) ⋅ ℎ𝑖)). (10)

Based on earlier derived Eq. (9), this can be reduced to:

𝑂((3 + 3𝑎
𝑒
)
𝑛0
𝑒
). (11)

(2) Only 𝑈𝑆𝑒𝑡 changes. Similarly, let the number of elements for
update in 𝑈𝑆𝑒𝑡 be 𝑂(𝑢). In this case, INFuse allocates 𝑂(𝑒) threads
to update all 𝑂(𝑒) sub-trees of node 𝑟, in which 𝑂(𝑢) sub-trees
require full updates (updating whole sub-trees), and the remain-
ing 𝑂(𝑢) sub-trees require partial updates (updating parts affected
by update changes to internal contexts). Similarly, as handling a
full update is most time-consuming, we analyze its complexity to
be representative. Note that all nodes (𝑂(𝑛0𝑒) for each sub-tree)
should be updated and visited twice, i.e., reevaluating truth val-
ues and regenerating links (no node creation required). Therefore,
the time cost is:

𝑂(2 ⋅
𝑛0
𝑒
). (12)

(3) Only 𝐷𝑆𝑒𝑡 changes. Let the number of elements for deletion in
𝐷𝑆𝑒𝑡 be 𝑂(𝑑). In this case, INFuse allocates 𝑂(𝑒) threads for all
𝑂(𝑒) sub-trees of node 𝑟, where 𝑂(𝑑) sub-trees are whole deleted,
and the remaining 𝑂(𝑒 − 𝑑) sub-trees are adjusted (some internal
parts are deleted). Similarly, handling an adjustment is most time-
consuming, we analyze its complexity to be representative. For a
sub-tree that requires an adjustment, INFuse needs to: (1) remove
𝑂(𝑑) branches for each context node, and (2) then reevaluate the
truth value and regenerate links for each node on paths from a
context node to node 𝑟. The former takes 𝑂((𝑘−1)⋅𝑑) time, and the
latter takes 𝑂(2 ⋅ 1

2 ⋅
∑𝑘−1

𝑖=1 (ℎ− ℎ𝑖)) time, considering that all paths
eventually merge into one in a random, steady way. Therefore,
the combined time cost is:

𝑂((𝑘 − 1) ⋅ 𝑑 + 2 ⋅ 1
2
⋅
𝑘−1
∑

𝑖=1
(ℎ − ℎ𝑖)). (13)

Based on earlier derived Eq. (8) and Eq. (9), this can be reduced
to:

𝑂((2𝑑
𝑒ℎ

+ 1
𝑒
)
𝑛0
𝑒
). (14)

Comparing the time costs for the three cases, we observe that
cases (1) and (2) share a comparable complexity (coefficient is a small
constant over one), while case (3) tends to be less complex (coeffi-
cient is smaller than one). Considering that in constraint checking,
elements to be added, deleted, or updated for a given task typically
occupy only a small proportion of all existing elements, we then have:
O(𝑎/𝑢/𝑑)≪O(𝑒). Therefore, we can conclude for the parallel structure
that the 𝐴𝑆𝑒𝑡 case has the most time complexity, and 𝑈𝑆𝑒𝑡 case has
the slightly less time complexity, and the 𝐷𝑆𝑒𝑡 case has the least time
complexity.
12
Fig. 18. Runtime tree for the nested structure.

Nested structure. We next consider node 𝑟 (concurrent point 𝑐’s
corresponding node in the runtime tree) with the nested tree structure,
as shown in Fig. 18. Similarly, we also assume 𝑂(𝑒) elements in each
context, and this makes that each sub-tree from node 𝑟 is continuously
split into 𝑂(𝑒) branches upon each context node. Therefore, for context
𝑐𝑡𝑥𝑖, there would be 𝑂(𝑒𝑖−1) corresponding context nodes in one of node
𝑟’s sub-tree. To calculate the total number of nodes in one of node 𝑟’s
sub-trees, we accumulate to obtain this number by approximating a
triangle-alike tree structure:

𝑂(1
2
⋅ ℎ ⋅ 𝑒𝑘−1) = 𝑂(

𝑛0
𝑒
). (15)

Then, we similarly consider three cases:

(1) Only 𝐴𝑆𝑒𝑡 changes. In this case, similarly adding a whole sub-tree
to node 𝑟 would dominate the cost, and thus we analyze this to be
representative. All nodes in such a sub-tree (with 𝑎 + 𝑒 elements
for each context) should be visited three times (for node creation,
truth value evaluation, and link generation). Therefore, the time
cost is:

𝑂(3 ⋅ 1
2
⋅ ℎ ⋅ (𝑒 + 𝑎)𝑘−1). (16)

Based on Eq. (15), it can be reduced to

𝑂(3 ⋅ (1 + 𝑎
𝑒
)
𝑘−1 𝑛0

𝑒
). (17)

(2) Only 𝑈𝑆𝑒𝑡 changes. In this case, similarly fully updating a whole
sub-tree to node 𝑟’s would dominate the cost, and we analyze this.
All nodes in such a sub-tree would be visited twice (node creation
not required). Therefore, the time cost is:

𝑂(2 ⋅
𝑛0
𝑒
). (18)

(3) Only 𝐷𝑆𝑒𝑡 changes. In this case, similarly adjusting a whole sub-
tree to node 𝑟 would dominate the cost, and we analyze this.
The time cost consists of two parts: (1) removing O(𝑑) branches
for each context node in this sub-tree, and (2) reevaluating truth
values and regenerating link for nodes on paths from each context
node to root node 𝑟. For the former, context 𝑐𝑡𝑥𝑖 initially (before
applying changes) corresponds to 𝑒𝑖−1 context nodes in the sub-
tree, and later (after applying changes) corresponds to (𝑒 − 𝑑)𝑖−1

context nodes. Then, with a typical top-down adjustment process,
the time cost for this part is:

𝑂(
𝑘−1
∑

𝑖=1
𝑑 ⋅ (𝑒 − 𝑑)𝑖−1) = 𝑂(𝑑 ⋅

(𝑒 − 𝑑)𝑘−1 − 1
𝑒 − 𝑑 − 1

). (19)

For the latter, all remaining nodes in the sub-tree (𝑒− 𝑑 elements
remaining now for each context now) except lowest-layer leaf
node in the sub-tree should be visited twice for reevaluating truth
values and regenerating links. Then, the time cost for this part is:

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

t
e
a

s
C
t
t
t
c
𝑂
t
t
t
s
c
s
a
2
f
i
g
a

a

v

Table 2
Time complexity comparison.

Constraint structure Checking technique Set state

Only 𝐴𝑆𝑒𝑡 changes Only 𝑈𝑆𝑒𝑡 changes Only 𝐷𝑆𝑒𝑡 changes

Parallel

ECC 𝑂(
3𝑘𝑎(2𝑒 + 𝑎)2

4𝑒
⋅
𝑛0
𝑒
) 𝑂(

3𝑘𝑢(2𝑒 − 𝑢)2

2𝑒
⋅
𝑛0
𝑒
) 𝑂(

3𝑘𝑑(2𝑒 − 𝑑)2

4𝑒
⋅
𝑛0
𝑒
)

Con-C 𝑂(
3𝑘𝑎(2𝑒 + 𝑎)

2𝑒
⋅
𝑛0
𝑒
) 𝑂(

3𝑘𝑢(2𝑒 − 𝑢)
𝑒

⋅
𝑛0
𝑒
) 𝑂(

3𝑘𝑑(2𝑒 − 𝑑)
2𝑒

⋅
𝑛0
𝑒
)

PCC 𝑂(
3𝑎(2𝑒 + 𝑎)

2𝑒
⋅
𝑛0
𝑒
) 𝑂(

3𝑢(2𝑒 − 𝑢)
𝑒

⋅
𝑛0
𝑒
) 𝑂(

𝑑(2𝑒 − 𝑑)
𝑒

⋅
𝑛0
𝑒
)

INFuse 𝑂(
3(𝑒 + 𝑎)

𝑒
⋅
𝑛0
𝑒
) 𝑂(2 ⋅

𝑛0
𝑒
) 𝑂(2𝑑 + ℎ

𝑒ℎ
⋅
𝑛0
𝑒
)

Nested

ECC 𝑂(
3𝑘𝑎(2𝑒 + 𝑎)

4
(𝑒 + 𝑎

𝑒
)𝑘−1 ⋅

𝑛0
𝑒
) 𝑂(

3𝑘𝑢(2𝑒 − 𝑢)
2

⋅
𝑛0
𝑒
) 𝑂(

3𝑘𝑑(2𝑒 − 𝑑)
4

⋅
𝑛0
𝑒
)

Con-C 𝑂(3𝑘𝑎
2

(𝑒 + 𝑎
𝑒

)𝑘−1 ⋅
𝑛0
𝑒
) 𝑂(3𝑘𝑢 ⋅

𝑛0
𝑒
) 𝑂(3𝑘𝑑

2
⋅
𝑛0
𝑒
)

PCC 𝑂(
3(2𝑒 + 𝑎)

2
(𝑒 + 𝑎

𝑒
)𝑘−1 ⋅

𝑛0
𝑒
) 𝑂(4𝑒

2 − 𝑢2

𝑒
⋅
𝑛0
𝑒
) 𝑂(

(𝑒 + 𝑑)(2𝑒 − 𝑑)
2𝑒

⋅
𝑛0
𝑒
)

INFuse 𝑂(3(𝑒 + 𝑎
𝑒

)𝑘−1 ⋅
𝑛0
𝑒
) 𝑂(2 ⋅

𝑛0
𝑒
) 𝑂(2𝑑 + 2ℎ

(𝑒 − 𝑑 − 1)ℎ
(1 − 𝑑

𝑒
)𝑘−1

𝑛0
𝑒
)

4

S
e
m

c
w
i
T
t
c
t
c
d
i
c

t
e
T
m
n

𝑂(2 ⋅ 1
2
⋅ ℎ ⋅ (𝑒 − 𝑑)𝑘−2). (20)

Combining the two parts, the total time cost is:

𝑂(𝑑 ⋅
(𝑒 − 𝑑)𝑘−1 − 1

𝑒 − 𝑑 − 1
+ ℎ ⋅ (𝑒 − 𝑑)𝑘−2). (21)

Based on Eq. (15), this can be reduced to

𝑂(2𝑑 + 2ℎ
(𝑒 − 𝑑 − 1)ℎ

(1 − 𝑑
𝑒
)𝑘−1

𝑛0
𝑒
) (22)

Considering O(𝑎/𝑢/𝑑)≪O(𝑒), we can conclude for the nested struc-
ure that the 𝐴𝑆𝑒𝑡 case has the most time complexity (containing
xponential calculation with a base over one) for INFuse, and the 𝑈𝑆𝑒𝑡
nd 𝐷𝑆𝑒𝑡 cases have a similar time complexity.

Finally, we similarly analyze the time complexities of existing con-
traint checking techniques (i.e., ECC (Nentwich et al., 2002), Con-
(Xu et al., 2013), and PCC (Xu et al., 2010)) for the comparison. Since

hese techniques check upon every single context change, we regard
he three sets as three lists of context changes, i.e, 𝐴𝑆𝑒𝑡 responding
o 𝑂(𝑘 ⋅ 𝑎) addition changes, 𝐷𝑆𝑒𝑡 responding to 𝑂(𝑘 ⋅ 𝑑) deletion
hanges, and 𝑈𝑆𝑒𝑡 responding to 𝑂(𝑘⋅𝑢) deletion changes and following
(𝑘 ⋅ 𝑢) addition changes. To facilitate our analysis, we assume that

he number of nodes in a sub-tree of node 𝑟 and the number of sub-
rees of node 𝑟 evenly increase or decrease. Therefore, we measure
heir averages for estimating the average complexity of checking one
ingle context change, and then multiply it with the number of context
hanges to estimate the overall time complexity of checking the three
ets respectively. Following this idea, we adapt the time complexity
nalysis of existing checking techniques from their work (Xu et al.,
010, 2013), and give our analyzing results in Table 2 (we leave the
ull-length analyses to the Appendix for interested readers). As shown
n Table 2, we can observe their relative differences in time complexity:
enerally, ECC is the most complex, Con-C and PCC are at the middle,
nd INFuse is the least complex.

Then combining all the analyses for the two extreme structures (par-
llel and nested), and the three set cases (𝐴𝑆𝑒𝑡, 𝑈𝑆𝑒𝑡, and 𝐷𝑆𝑒𝑡) for all

checking techniques (ECC, PCC, Con-C, and our INFuse), we summarize
our three main conclusions: (1) impact of the constraint structure: the
parallel structure incurs the least complexity to constraint checking,
and nested structure incurs the most complexity, and other mixed
structures would behave in between; (2) impact of the set type: 𝐴𝑆𝑒𝑡
changes (context addition) incur the most complexity to constraint
checking, 𝑈𝑆𝑒𝑡 changes (context update) incur moderate complexity,
and 𝐷𝑆𝑒𝑡 changes (context deletion) incur the least complexity; (3) the
comparisons among all techniques: ECC has the weakest capability of
handling complex constraint checking, Con-C/PCC has the moderate
capability, and INFuse has the strongest capability. We would also
alidate these analyses in RQ4 in the evaluation.
13

v

4. Evaluation

In this section, we evaluate INFuse’s performance and compare it
with existing constraint checking techniques.

4.1. Research questions

We aim to answer the following three research questions:

• RQ1 (Motivation): How do existing constraint checking techniques
behave when handling large-volume dynamic contexts?

• RQ2 (Effectiveness): How effective is INFuse in constraint check-
ing for detecting context inconsistencies, as compared with existing
techniques?

• RQ3 (Fusion Effect): How does INFuse’s fusion mechanism con-
tribute to its efficiency improvement?

• RQ4 (Complexity Factor): How is INFuse’s efficiency affected by
different complexity factors?

• RQ5 (Practical Usage): How effective is INFuse in constraint check-
ing under real-life settings?

.2. Experimental design and setup

Application. For fair comparisons, we used the taxi application,
martCity, as our experimental subject, following existing work (Xu
t al., 2010, 2013, 2015; Wang et al., 2021). The application used
assive taxi-driving data for smart route guidance.
Contexts. The application was accompanied with massive data

oncerning 2,716 vehicles monitored in a continuous period of 24 h,
hich include 4.3 million raw driving data lines (containing vehicle

d, GPS coordinates, driving speed and orientation, and service status).
hese data correspond to 25.6 million context changes as modeled in
he application. Fig. 19 illustrates the distribution of these context
hanges by 24 h-based groups (from 0 am–24 pm). We observed that
hese numbers can incur significantly varying workloads to constraint
hecking, since they range from 311,240 to 1,664,900 (up to a 435%
ifference). We believe that this characteristics can make our exper-
mental data more representative for evaluating abilities of different
onstraint checking techniques against various workloads.
Constraints. We used all 48 consistency constraints associated with

he application, also studied in existing work (Xu et al., 2010; Wang
t al., 2021). They cover all formula types in the constraint language.
hey considered both spacial and temporal properties about vehicles’
ovements. These properties could be divided into four categories,
amely, validating vehicles’ geographical ranges, reasonable velocities,

elocity-location relationships, and hot-area monitoring.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

n
s
(
W
i
i
m

R
w

s
u
T
c
t
f
(
a
n
t

e
f
d
r
n
t
q

4

4

t

c
C
l
t
r
T
B
i
(

t
f

4

t
w
c
i
m
c

c
i
t
o
p
e
9
C
P

Fig. 19. Distribution of context changes for 24 h-based groups.

Process. In experiments, contexts are fed to the application with
a middleware layer in between, which checks the contexts for con-
sistency. We compared INFuse with existing constraint checking tech-
iques (ECC, PCC, and Con-C), using both their original versions (sub-
cript ‘‘O’’) (Xu et al., 2010, 2013) and variants enhanced by GEAS
subscript ‘‘G’’) (Wang et al., 2021) for better scheduling for efficiency.
e also compared INFuse with a naïve implementation INFuse0 of the

ncremental-concurrent idea, which directly split incremental check-
ng into parallel computing units (i.e., without INFuse’s concurrency
aximization).
Setup. We design three independent variables:

• Checking technique. We compare eight techniques or variants,
namely, ECC𝑂, ECC𝐺, Con-C𝑂, Con-C𝐺, PCC𝑂, PCC𝐺, INFuse0, and
INFuse.

• Checking workload. As aforementioned, different groups of context
changes incur significantly varying workloads.
Therefore, we use all 24 groups of context changes to evaluate
and compare the performance of different constraint checking
techniques (for fairness).

• Running mode. We study two running modes, namely, offline and
online. With the former, next context changes are fed to the
application only when previous changes have been handled (for
comparing true efficiency differences). With the latter, context
changes are fed to the application strictly according to their
original timestamps and intervals in between, no matter whether
previous changes have been handled or not (for testing in a
real-life setting, possibly causing false negatives or positives).

We design three dependent variables:

• Checking time. It measures the total time spent on constraint
checking.

• Precision. It measures the proportion of context inconsistencies
that are correctly reported against all reported inconsistencies.

• Recall. It measures the proportion of context inconsistencies that
are correctly reported against all inconsistencies that should be
reported.

All experiments were conducted on a commodity PC with an AMD
yzen 5600X 6-Core Processor with 32 GB RAM, installed with MS
indows 10 Professional and Oracle Java 8.

To answer research question RQ1, we compare six existing con-
traint checking techniques and INFuse0 on all 24-h context changes
nder the offline mode to evaluate and compare their performance.
o answer research question RQ2, we compare all eight constraint
hecking techniques (including INFuse0 and INFuse) on all 24-h con-
ext changes, as well as 24 h-based groups separately under the of-
line mode, for evaluating and comparing their checking qualities
by reported inconsistencies) and efficiencies (by checking time). To
nswer research question RQ3, we study how INFuse’s fusion mecha-
ism enhances the checking efficiency of incremental and concurrent
14

echniques individually by selective enabling/disabling treatments in
Fig. 20. Checking time comparison for the seven techniques with respect to all 24-h
context changes (the red dashed line represents the 24-h time limit).

INFuse in checking selected groups of context changes, and study how
they are fused together to achieve INFuse’s overall efficiency improve-
ment. To answer research question RQ4, we study INFuse’s checking
fficiency by controlling different complexity factors, e.g., with dif-
erent structures of consistency constraints (parallel or nested) and
ifferent set types in checking tasks (𝐴𝑆𝑒𝑡, 𝑈𝑆𝑒𝑡, or 𝐷𝑆𝑒𝑡). To answer
esearch question RQ5, we compare all eight constraint checking tech-
iques on 24 h-based groups under the online mode (i.e., with real-life
imestamps and intervals), for evaluating and comparing their checking
ualities (by precision and recall) and efficiencies (by checking time).

.3. Experimental results

We answer the five research questions in turn.

.3.1. RQ1 (Motivation)
We compared the checking time of the seven constraint checking

echniques on all 24-h context changes in Fig. 20.
We observe that the checking time varied significantly for different

onstraint checking techniques, e.g., ECC up to 153.3–970.0 h, Con-
for 83.7–506.7 h, and PCC for 31.7–53.3 h. We note that the time

imit for handling all 24-h context changes is 24 h, as illustrated by
he red dashed line, and thus none of these techniques fulfilled this
equirement, e.g., the worst case of ECC𝑂 took more than 40 days!
his strongly calls for more efficient constraint checking techniques.
esides, also as INFuse0 shows, directly splitting incremental checking

nto parallel computing units did not bring significant improvement
53.8 h), behaving even worse than PCC (31.7–53.3 h).

Therefore, we answer RQ1 as follows: All existing constraint checking
echniques and naïve implementation of the incremental-concurrent idea
ailed to deliver required checking efficiency, calling for new research efforts.

.3.2. RQ2 (Effectiveness)
We then compared the checking time of INFuse to the other seven

echniques on all 24-h context changes in Fig. 21. As the comparison
as under the offline mode, all context changes were fed and then

hecked in turn, and thus all checking techniques obtained correct
nconsistency detection results (this may not be true for the online
ode, as discussed later). Therefore, we focus on the checking time

omparison here.
From Fig. 21, we observe that INFuse took only eight hours to

omplete constraint checking for all 24-h context changes, which sat-
sfied the aforementioned time limit requirement (note that none of
he other seven techniques succeeded, as discussed in RQ1). More-
ver, we also observe that INFuse brought significant efficiency im-
rovement, as compared with other constraint checking techniques,
.g., 18.2x–120.3x efficiency improvement against ECC (or 94.8%–
9.2% checking time reduction), 9.5x–62.3x improvement against Con-
(or 90.4%–98.4% time reduction), 3.0x–5.7x improvement against

CC (or 74.8%–85.0% time reduction), and 5.7x improvement against

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

w

I
e
a
R
s
t
t
c
t
b
c
c
t
T
f
i
t
o
I
C
c
c
c
m

c
c
a

4

I
c
(

f
F
a
n
‘
s
o
a
a
o
S

e
𝐴
W
T
t
p
c
a

Fig. 21. Checking time comparison for all the eight checking techniques with respect
to all 24-h context changes.

INFuse0 (or 85.1% time reduction). This shows INFuse’s general supe-
riority and stable high-efficiency for large-volume constraint check-
ing tasks. Note that INFuse’s clear efficiency improvement over ex-
isting checking techniques also echoes our earlier conclusion (3) in
Section 3.5.

To further evaluate INFuse’s effectiveness across different wo-
rkloads, we next compared the checking time of all the eight constraint
checking techniques on 24 h-based groups in both Fig. 22 (in linear
ordinate coordinates) and Fig. 23 (in logarithmic ordinate coordinates)
for better illustration and comparisons. We observe that: (1) Although
different workloads incurred greatly varying checking time (from sec-
onds to hours, hundreds even thousands of times in the performance
difference), INFuse behaved consistently significant and stable effi-
ciency improvement for checking all groups of context changes, against
all other techniques. For example, INFuse’s efficiency improvement for
the lightest workload (group 4 in the time slot of 4 am–5 am) is 0.0x–
18.6x and that for the heaviest workload (group 17 in the time slot of 5
pm–6 pm) is 3.1x–166.2x. The average efficiency improvement for 24
h-based groups is 2.3x–98.1x, as compared with other techniques. (2)
INFuse’s checking time (from 3.4 s to 0.8 h) satisfied all one-hour time
limits for every group, consistently exhibiting INFuse’s high efficiency
across different checking workloads. (3) When comparing INFuse with
the naïve implementation INFuse0, their difference was also large and
impressive, e.g., the time reduction varying from 32.2% to 85.6%. We
owe all these achievements to INFuse’s carefully designed concurrency
maximization and fusion soundness as explained and analyzed earlier.

We also studied the trend of INFuse’s efficiency improvements for 24
h-based groups with the increasing workloads in Fig. 24. Note that the
number of context changes to handle in each hour largely approximates
the checking workload. In the figure, we observe that with the growth
of the checking workload, INFuse’s efficiency improvement over the
other existing checking techniques and INFuse0 generally hold a stably
increasing trend. This strongly suggests INFuse’s potential in handling
even higher checking workloads.

Therefore, we answer RQ2 as follows: INFuse worked significantly
efficiently, achieving 3.0x–120.3x improvements, as compared with all other
constraint checking techniques. Besides, INFuse worked stably and were
suitable for higher checking workloads.

4.3.3. RQ3 (Fusion effect)
We then study how INFuse’s fusion mechanism contributes to its

efficiency improvement. Generally, INFuse infuses two typical con-
straint checking techniques, i.e., incremental and concurrent checking,
together. However, as studied in RQ1, directly combining them can
lead to efficiency sacrifice instead, i.e., INFuse0’s efficiency is even
worse than PCC𝑂. By proposing its task arrangement in WHAT-TO-
CHECK and fusion treatment in HOW-TO-CHECK, INFuse succeeds in
soundly fusing incremental and concurrent checking together, with
promising efficiency (3.0x–120.3x efficiency improvements) as studied
in RQ2. To further study how INFuse’s fusion mechanism contributes
15

1

to such efficiency improvement, we design two INFuse’s variants, IN-
Fuseincre and INFusecon. INFuseincre disables the concurrent treatment in
INFuse and retains incremental checking with INFuse’s fusion mecha-
nism, while INFusecon disables the incremental treatment in INFuse and
retains concurrent checking with INFuse’s fusion mechanism. We took
ECC𝑂 as the baseline (i.e., set as 1) and compared relative efficiency
improvements for the other five techniques (i.e., PCC𝑂, Con-C𝑂, INFuse,
and its two variants) over ECC𝑂 on group 9 of context changes (median

orkload). Results are shown in Fig. 25.
From the figure, we observe that the efficiency improvement of

NFuse0 over ECC𝑂 (16.5x) is even smaller than that of PCC𝑂 (17.5x),
choing that combining incremental and concurrency checking directly
ctually compromises the checking efficiency, also earlier observed in
Q1. However, when such incremental and concurrent techniques are
upported by INFuse’s fusion mechanism, i.e., INFuseincre and INFusecon,
heir efficiency would be largely improved, i.e., from the original 17.5x
o 39.1x for PCC, and from 1.1x to 12.5x for Con-C, suggesting great
ontributions of INFuse’s fusion mechanism to both further improving
he original incremental and concurrent superiority. This is mainly
ecause for PCC, INFuse’s fusion mechanism significantly amplifies its
omputational intensity (i.e., how many nodes in the tree structures are
omputed in each scheduled constraint checking), which is well above
hat of PCC, as illustrated by the intensity distribution in Fig. 26(a).
his explains how INFuseincre outperforms PCC. For Con-C, INFuse’s
usion mechanism brings more potentials for concurrent checking, as
llustrated by the thread number distribution in Fig. 26(b). We observe
hat INFuse’s median thread number (101) is well above that (68)
f Con-C. This explains how INFusecon outperforms Con-C. Altogether,
NFuse’s fusion mechanism can further improve both PCC’s and Con-
’s high efficiency. After combining them together (i.e., INFuse), we
an observe significantly more efficiency improvement, i.e., 105.2x as
ompared to ECC𝑂. Compared to directly combining incremental and
oncurrent checking by INFuse0, INFuse’s fusion mechanism can indeed
ake extra and dominant contributions.

Therefore, we answer RQ3 as follows: INFuse’s fusion mechanism
ontributes greatly to its impressive efficiency improvement on constraint
hecking, by significantly enhancing the efficiency of its fused incremental
nd concurrent checking.

.3.4. RQ4 (Complexity factor)
To investigate the impacts of different complexity factors, we study

NFuse’s checking efficiency under different structures of consistency
onstraints (parallel or nested) and different set types in checking tasks
𝐴𝑆𝑒𝑡, 𝑈𝑆𝑒𝑡 or 𝐷𝑆𝑒𝑡).

First, we investigate how INFuse’s efficiency was affected by dif-
erent constraint structures (parallel vs. nested). We measured IN-
use’s average checking time when checking each of its arranged tasks
gainst a parallel constraint (from category ‘‘geographical ranges’’) and
ested consistency constraint (from category ‘‘reasonable velocities’’,

‘velocity-location relationships’’, or ‘‘hot-area monitoring’’). Results are
hown in Fig. 27. We observe that INFuse spent significantly more time
n checking consistency constraints with nested structures (5.02 ms on
verage) than those with parallel structures (0.08 ms on average), with
difference around 62.8x. This suggests that nested structures can incur
bviously heavier checking workloads, echoing our conclusion (1) in
ection 3.5.

Then, to investigate how INFuse’s efficiency was affected by differ-
nt set types of INFuse’s arranged checking tasks, we control to check
𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡, and 𝑈𝑆𝑒𝑡 tasks individually with an increasing set size.
e simulated elements in each set with randomly synthesized values.

o be more realistic, we randomly selected ten snapshots referring to
en different checking timepoints to apply INFuse from the checking
rocess conducted in RQ2. We used them as the initial statuses before
hecking and applying INFuse to check the controlled tasks including
non-empty 𝐴𝑆𝑒𝑡, 𝐷𝑆𝑒𝑡, or 𝑈𝑆𝑒𝑡 with a increasing set sizes (from

to 16, following the average set size during the whole checking

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

p

𝑈

Fig. 22. Checking time comparison for all checking techniques on 24 h-based groups (linear scale).
Fig. 23. Checking time comparison for all checking techniques on 24 h-based groups (logarithmic scale).
Fig. 24. INFuse’s efficiency improvement over existing checking techniques on 24 h-based groups (sorted by increasing workloads).
rocess in RQ2). As shown in Fig. 28, we can observe that INFuse
spent significantly more checking time on checking 𝐴𝑆𝑒𝑡 tasks than
𝑈𝑆𝑒𝑡 and 𝐷𝑆𝑒𝑡 tasks (ratio is about 100:50:1), suggesting that checking
𝐴𝑆𝑒𝑡 indeed induces the most checking workloads for INFuse, while
𝑆𝑒𝑡 incurs the median workloads and 𝐷𝑆𝑒𝑡 incurs the least. With the
16

S

increasing set size, INFuse followed an almost linear growing trend in
the checking time. This also echoes our conclusion (2) in Section 3.5.

Therefore, we can answer RQ4 as follows: Both complex constraint
structures (e.g., nested) and checking sets (𝐴𝑆𝑒𝑡) can incur the most
checking workloads for INFuse, confirming our complexity analyses in
ection 3.5.

The Journal of Systems & Software 207 (2024) 111852

17

L. Zhang et al.

Ta
bl
e
3

Co
m

pa
ris

on
s

am
on

g
al

l
te

ch
ni

qu
es

un
de

r
th

e
on

lin
e

m
od

e.

Ch
ec

ki
ng

te
ch

ni
qu

es
M

et
ric

s
Gr

ou
ps

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

EC
C 𝑂

𝑇 c
os

t(
m

in
)

57
.5

33
.9

14
.8

4.
4

2.
1

2.
3

18
.4

59
.1

61
.7

64
.2

66
.8

62
.3

60
.6

64
.1

61
.0

64
.8

64
.2

67
.2

65
.5

65
.1

65
.9

60
.7

60
.9

62
.6

Pr
ec

isi
on

(%
)

4.
4%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
15

.3
%

26
.6

%
7.

0%
8.

0%
8.

4%
7.

3%
7.

0%
6.

4%
7.

4%
7.

7%
9.

0%
7.

8%
8.

3%
8.

0%
8.

1%
8.

1%
8.

4%
6.

1%

Re
ca

ll(
%

)
4.

1%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

15
.2

%
23

.1
%

3.
2%

3.
4%

1.
5%

1.
5%

1.
9%

1.
6%

1.
4%

1.
4%

1.
6%

1.
3%

1.
4%

1.
4%

1.
6%

1.
4%

1.
5%

1.
7%

Co
n-

C 𝑂

𝑇 c
os

t(
m

in
)

29
.9

13
.0

5.
8

1.
8

0.
9

1.
0

7.
1

42
.7

60
.2

59
.9

61
.0

63
.1

60
.7

59
.8

62
.5

60
.7

64
.3

62
.5

63
.5

63
.3

61
.5

63
.3

60
.8

60
.3

Pr
ec

isi
on

(%
)

4.
8%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

75
.9

%
7.

0%
6.

3%
7.

0%
6.

4%
5.

7%
5.

6%
6.

3%
7.

1%
7.

3%
7.

0%
7.

2%
7.

2%
6.

6%
7.

0%
6.

8%
5.

0%

Re
ca

ll(
%

)
4.

8%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
74

.7
%

5.
4%

4.
2%

2.
1%

2.
0%

2.
1%

2.
2%

1.
7%

1.
7%

2.
0%

1.
6%

1.
8%

1.
9%

1.
9%

1.
9%

1.
9%

2.
2%

PC
C 𝑂

𝑇 c
os

t(
m

in
)

3.
4

1.
9

0.
8

0.
4

0.
2

0.
2

0.
8

5.
8

19
.4

25
.2

56
.6

57
.0

58
.5

58
.7

56
.9

56
.7

57
.0

56
.8

56
.9

57
.2

56
.4

56
.4

56
.6

58
.4

Pr
ec

isi
on

(%
)

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
92

.5
%

4.
2%

3.
8%

3.
9%

5.
8%

4.
3%

4.
4%

4.
2%

4.
6%

4.
6%

4.
5%

4.
4%

4.
7%

4.
4%

3.
8%

Re
ca

ll(
%

)
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

90
.3

%
3.

6%
3.

5%
3.

8%
5.

6%
3.

6%
3.

4%
3.

5%
3.

5%
3.

7%
3.

6%
3.

7%
3.

8%
3.

9%
3.

8%

EC
C 𝐺

𝑇 c
os

t(
m

in
)

11
.0

5.
3

2.
2

0.
9

0.
4

0.
5

2.
7

16
.4

55
.1

59
.8

57
.7

57
.5

58
.3

58
.6

57
.2

58
.4

58
.2

59
.6

58
.8

57
.8

57
.2

56
.9

57
.6

58
.0

Pr
ec

isi
on

(%
)

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

35
.5

%
7.

0%
4.

7%
4.

1%
4.

1%
3.

6%
4.

7%
5.

1%
5.

4%
5.

5%
5.

4%
5.

3%
4.

9%
4.

8%
4.

7%
3.

8%

Re
ca

ll(
%

)
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
35

.4
%

6.
6%

3.
2%

3.
0%

3.
6%

3.
0%

2.
8%

2.
7%

3.
2%

2.
7%

3.
0%

3.
0%

3.
1%

2.
8%

3.
1%

3.
3%

Co
n-

C 𝐺

𝑇 c
os

t(
m

in
)

4.
6

2.
2

0.
9

0.
5

0.
3

0.
3

1.
1

6.
8

24
.3

32
.5

57
.3

57
.2

59
.3

58
.6

56
.3

55
.7

56
56

.3
56

.6
56

.1
56

.4
56

.4
57

.2
59

.7

Pr
ec

isi
on

(%
)

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
92

.9
%

3.
8%

3.
6%

3.
8%

3.
8%

3.
8%

4.
4%

4.
2%

4.
6%

4.
8%

4.
5%

4.
0%

4.
4%

4.
3%

3.
3%

Re
ca

ll(
%

)
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

90
.0

%
3.

5%
3.

4%
3.

5%
3.

7%
3.

2%
3.

3%
3.

5%
3.

2%
3.

8%
3.

7%
3.

4%
3.

6%
3.

8%
3.

3%

PC
C 𝐺

𝑇 c
os

t(
m

in
)

2.
6

1.
5

0.
7

0.
3

0.
2

0.
2

0.
6

4.
1

13
.0

18
.3

59
.9

60
.0

52
.2

54
.7

59
.9

59
.9

60
.2

59
.9

60
.0

59
.9

59
.7

60
.1

59
.9

54
.3

Pr
ec

isi
on

(%
)

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
91

.0
%

3.
9%

3.
8%

4.
6%

33
.0

%
4.

4%
4.

0%
4.

2%
4.

1%
4.

2%
4.

4%
4.

0%
4.

6%
4.

5%
4.

9%

Re
ca

ll(
%

)
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

91
.0

%
3.

9%
3.

8%
4.

6%
33

.0
%

4.
4%

3.
8%

4.
1%

4.
0%

4.
3%

4.
2%

4.
1%

4.
4%

4.
3%

4.
8%

IN
Fu
se

0

𝑇 c
os

t(
m

in
)

3.
5

2.
0

1.
0

0.
4

0.
2

0.
2

0.
9

6.
2

21
.0

26
.5

57
.0

57
.2

58
.7

58
.0

57
.2

57
.0

57
.5

57
.7

56
.9

56
.8

57
.0

57
.2

57
.2

58
.6

Pr
ec

isi
on

(%
)

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
92

.6
%

4.
1%

3.
9%

3.
9%

6.
2%

4.
3%

4.
4%

4.
3%

4.
5%

4.
6%

4.
4%

4.
3%

4.
5%

4.
4%

3.
7%

Re
ca

ll(
%

)
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

90
.4

%
3.

5%
3.

6%
3.

9%
3.

8%
5.

6%
3.

3%
3.

6%
3.

4%
3.

7%
3.

6%
3.

5%
3.

7%
3.

8%
3.

6%

IN
Fu
se

𝑇 c
os

t(
m

in
)

0.
9

0.
8

0.
4

0.
2

0.
2

0.
2

0.
3

1.
6

4.
0

7.
6

28
.7

27
.5

16
.2

19
.7

39
.7

42
.0

38
.5

49
.2

43
.6

38
.8

32
.7

34
.8

27
.8

16
.1

Pr
ec

isi
on

(%
)

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

98
.2

%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

Re
ca

ll(
%

)
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
98

.2
%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%
10

0.
0%

10
.0

%
10

0.
0%

10
0.

0%
10

0.
0%

10
0.

0%

an
d

re
pr

es
en

t
th

e
pr

ec
isi

on
or

th
e

re
ca

ll
is

[0
.0

%
,

10
.0

%
),

[1
0.

0%
,

90
.0

%
),

[9
0.

0%
,

10
0.

0%
),

an
d

10
0.

0%
re

sp
ec

tiv
el

y.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Fig. 25. Efficiency improvement comparison of six checking techniques over ECC𝑂 .

4.3.5. RQ5 (Practical usage)
We also compared INFuse with the other seven techniques under an

online mode, which simulated real-life context change scenarios with
actual timestamps and intervals. We focus on the checking quality (by
precision and recall) and efficiency (by checking time). Table 3 lists the
comparison results.

From the table, we observe that: (1) All six existing checking
techniques (ECC, Con-C, PCC, and their variants) are undesirable be-
cause they were all subject to quality problems. Consider the most
efficient existing checking technique PCC𝐺. It produced satisfactory
checking results (precision = 100% and recall = 100%) only for the
first 9 groups (i.e., group 0 to group 8) among all 24 groups (these
9 groups represents the least workloads). Then, its quality declined
rapidly for other higher-workload groups, i.e., it suffered from ex-
tremely severe quality problems (below 10% precision and recall) for
13 groups (i.e., from group 10 to group 23 except group 13). Regarding
other existing techniques, since they were even less efficient than PCC𝐺,
they produced much worse results, e.g., PCC𝑂 and Con-C𝐺 suffered
from such extremely severe quality problems for 14 groups (58% of
all 24 groups), ECC𝐺 for 15 groups (63%), and ECC𝑂 and Con-C𝑂
even for 17 groups (71%). This exactly motivates us for a desirable
constraint checking technique like INFuse, as we studied in this work.
(2) The naïve implementation INFuse0 also could not alleviate the
quality problems. On one hand, it still suffered from such quality
problems for 14 groups. On the other hand, as compared to PCC𝐺,
INFuse0 exhibited even less efficiently by taking more checking time
for groups in which they both reported the same correct inconsistency
results, thus reflecting their true efficiency difference since all context
changes are fairly checked in this case. This again echoes our claim
that directly splitting incremental checking into parallel computing
units would easily compromise the efficiency instead. (3) INFuse both
obtained proper constraint checking results and achieved high checking
efficiency. For all 24 h-based groups, INFuse achieved a 100% precision
and recall for 23 groups except group 10, for which INFuse achieved
a 98.2% precision and recall, significantly higher than those of other
techniques (precision down to 3.3% and recall down to 1.3%). We note
that a 100% precision and recall may not always be possible since
network connection and object serialization costs were inevitable under
real-life settings, which could affect other key computations unexpect-
edly. Regarding the checking efficiency, INFuse always took the least
time for all 24 groups, 12.5%–98.4% less than other techniques across
different groups.

Therefore, we answer RQ5 as follows: INFuse worked significantly
efficiently under real-life dynamic scenarios with a 100% precision and
recall for almost all groups, while other techniques could suffer down
to a 3.3% precision and 1.3% recall, exhibiting INFuse’s clear technical
superiority and applicability.

4.4. Threats analysis and discussion

First, in our experiments, we selected only one application, and this
18

could cause possible threats to experimental conclusions. Regarding
this, we have tried to alleviate such threats by carefully considering rel-
evant factors: (1) The application was also used in existing work (Wang
et al., 2021; Xu et al., 2010, 2013, 2015), with the same set of
consistency constraints and contexts, so as to facilitate across-technique
comparisons (to be fair); (2) We used all 48 consistency constraints
associated with the application, which cover all constraints used in ex-
isting work’s experiments (to be comprehensive), and these constraints
also cover all formula types supported in the constraint language (to
be complete); (3) All 24 groups of context changes (collected in a
continuous period of 24 h) were selected from a whole day to represent
varying and realistic workloads, for examining the effectiveness of
different constraint checking techniques (to be representative); (4) All
the constraint checking techniques were repeated for every context
change group around five times (to be reliable), except for ECC𝑂 and
Con-C𝑂, which ran extremely too costly (each run lasted over 40 and
20 days, respectively).

Second, to avoid possible platform and implementation bias, we
(re)implemented all constraint checking techniques under the same
I/O interfaces and data structures according to their respective pub-
lications, and compared with their released versions for ensuring the
correctness of our implementation. We have also checked all the in-
consistencies reported by every constraint checking technique. We have
also released our implementation1 to facilitate follow-up research.

5. Related work

In this section, we discuss the related work in recent years, follow-
ing four aspects, namely, managing consistency for software artifacts,
reducing noises in raw low-quality data, detecting inconsistencies for
application contexts, and resolving detected context inconsistencies.
These four aspects closely relate to our studied context inconsistency
problem in this work.

Managing consistency for software artifacts. Our software engi-
neering community has extensively studied the problem of consistency
management for various software artifacts, which concern different
software development processes, e.g., software refactoring (Le et al.,
2017), method name suggestion (Li et al., 2021), agile model-based
development (Jongeling et al., 2019), and the whole software en-
gineering process (Mayr-Dorn et al., 2021a). Some pieces of work
focus on managing the consistency of traditional software artifacts, like
edit scripts (Kehrer et al., 2013), UML models (Bashir et al., 2016;
Messaoudi et al., 2017; Wei and Sun, 2021), XML documents (Nentwich
et al., 2002; Reiss, 2006; Handley et al., 2021), and distributed source
code (Demuth et al., 2016), which are featured as being typically
static or evolving slowly. This line of work mainly pays attention to
the effectiveness of consistency management rather than efficiency.
Other pieces of work tackle more dynamic artifacts in context-aware
systems (Limón et al., 2018; Chen et al., 2022a), attention-aware
systems (Limón et al., 2019), and safety-critical systems (Mayr-Dorn
et al., 2021b). These systems recently receive increasing attention for
their functional qualities, and we are working along this line with
extensive application scenarios, like Pollen Wise (pollen Sense, 2022),
Humanoid Companion Robot (Kuo et al., 2021), self-driving vehicle
systems (Waymo, 2022; Davies, 2017), and unmanned aerial vehicles
(UAVs) (Yoon and Noh, 2022; Mazumdar et al., 2022; Lahmeri et al.,
2022). Unlike traditional software artifacts, these artifacts are featured
as changing rapidly, thus requiring more efficient consistency man-
agement. Our work in this article studies consistency of application
contexts, which are modeled at the application layer based on its
perceived environmental conditions with some derivation processes
from raw data. For such applications, some frameworks or middleware
infrastructures, like Cabot (Xu et al., 2004), Adam (Xu et al., 2012),
Lime (Murphy et al., 2006), and CARISMA (Capra et al., 2003), have

1 https://github.com/yuzi-zly/INFUSE

https://github.com/yuzi-zly/INFUSE

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Fig. 26. Distribution comparisons for studying INFuse’s fusion mechanism.
f
i
t
x
c
u
p
c
A
b
r
e
m
e
o
c
i
e
w
(
s
t
t
a
g
l
e

i
a
t
i
t
s
m
c
(
p
t
c
r

Fig. 27. INFuse’s average checking time for parallel and nested structure.

Fig. 28. INFuse’s checking time comparison for 𝐴𝑆𝑒𝑡, 𝑈𝑆𝑒𝑡, and 𝐷𝑆𝑒𝑡.

also been developed to specially support context-aware properties with
quality guarantees (e.g., consistency or reliability).

Reducing noises in raw low-quality data. Raw environmental
data for applications are mainly collected by various physical sensors
(e.g., cameras and microphones). Typically, raw data contain natural
noises due to the instability of sensor readings. For example, the widely
used radio-based object identification and tracking RFID technology
can often be subject to missing or cross reading problems (Jeffery
et al., 2006; Rao et al., 2006; Patil et al., 2015; Fescioglu-Ünver et al.,
2015). To reduce such noises, one line of work set pre-specific filtering
thresholds (Rao et al., 2006) or matching patterns (Chaudhuri et al.,
2003) to filter data to make them meet specific requirements. However,
one major limitation of such techniques is that they focus mainly
on proper threshold selection or pattern designing, while sometimes
application developers or system administrators are not fully aware
of application quality requirements. Recently, another line of work
took advantage of artificial intelligence (AI) technologies to clean raw
data for better quality. For example, Darcy et al. (2011) proposed a
methodology to combine highly intelligent feature set definition and
classifying techniques to handle false-positive data problems. Wei et al.
(2022) proposed to select training data accurately facing the larger
number of the noisy labels in the datasets. Chun et al. (2019) and Tan
et al. (2019) proposed to reduce data noises for UAVs via convolutional
19

e

neural networks. However, such data cleaning techniques would re-
quire substantial training data and may not be easy to adapt to other
dynamic application scenarios.

Detecting inconsistencies for application contexts. This aspect
ocuses on how to efficiently and effectively detect inconsistencies
n dynamic application contexts. On this particular aspect, various
echniques work with varying efficiency gains and costs. For example,
linkit (Nentwich et al., 2002) worked in a full checking way, as the
orrectness baseline, to detect all possible inconsistencies in artifacts
nder checking; PCC (Xu et al., 2010) checked incrementally by reusing
revious results for higher efficiency; Con-C (Xu et al., 2013) checked
oncurrently on parallel computational units with similar workloads.
ll these techniques are useful for different application requirements,
ut are gradually becoming less effective, with the rapid growth of envi-
onmental dynamics and context volume. Regarding this, GEAS (Wang
t al., 2021) was proposed to adaptively schedule the checking of
ultiple context changes together to help accelerate a spectrum of

xisting techniques. Our work resembles this line of efforts, but builds
n dynamic validity criteria derived from incremental and concurrent
hecking, different from GEAS, which builds only on static constraint
nformation. As a result, INFuse works even more efficiently than any
xisting constraint checking technique, either originally or combined
ith GEAS, as our experimental results reported. Besides, Xu et al.

2007a) theoretically analyzed possible link generation wastes in con-
traint checking, which opened a new direction to further improve
he checking efficiency (i.e., reducing the link generation part rather
han making the detection itself faster). Chen et al. (2022b) worked
long this line, and recently went further by proposing to analyze and
enerate exactly necessary-only links (i.e., eliminating all redundant
ink generation), and this effort can additionally help improve the
fficiency for context inconsistency detection.
Resolving detected context inconsistencies. Besides detecting

nconsistencies for application contexts, one relevant and important
spect of research efforts is around resolving detected context inconsis-
encies. Existing inconsistency resolution work can be roughly classified
nto two categories. One category of work proposed various resolution
echniques based on heuristics. For example, Chomicki et al. (2003)
elected a random context for removal to solve the inconsistency among
ultiple contexts to minimize the cost. Bu et al. (2006) removed all

ontexts related with the same inconsistency to play safety. Xu et al.
2008) proposed another heuristic technique, which removed contexts
articipated in the detected inconsistencies more frequently to balance
he cost and safety. However, these techniques could unexpectedly
ause applications to behave abnormally, since they may accidentally
emove important contexts applications are relying on. The other cat-

gory of work took application logics into consideration during to

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

i
t
c

C

o
F
W
F

D

t
C
S
w
S

D

A

C
e
G
l
t
a
I

A

o
c
n
s
o
g

A

A

w
c
f

A

c
u

A

s
l

A

s
o
⊗
f
l

A

f
s
S

A

u
u
𝖾

the fixing process for the detected inconsistencies. For example, Chen
et al. (2011) proposed to resolve inconsistencies with the help of
application semantics to maximize possible application workflows. Xu
et al. (2007b, 2011) and Khelladi et al. (2019) proposed to analyze and
minimize side effects of such fixing or resolution actions unexpectedly
on applications. These pieces of research efforts are consequent actions
after high-efficient context inconsistency detection, as we studied in
this work, for a large-spectrum of adaptive modern applications.

6. Conclusion

In this work, we studied the context inconsistency detection prob-
lem, and analyzed how to substantially boost its efficiency over state-
of-the-art techniques. We proposed a novel INFuse approach, which
on one hand automatically identifies valid and maximized context
change groups for concurrency maximization, and on the other hand
soundly fuses incremental and concurrent checking together for reuse
and efficiency maximization. These efforts work on both the constraint
checking aspect and checking scheduling aspect, thus outperforming
any existing constraint checking technique and checking scheduling
strategy, as well as their combinations, realizing a 3.0x–120.3x effi-
ciency improvement with desirable quality guarantees. In future, we
plan to more extensively validate INFuse on other application scenar-
os with massive context data, and explore further finer-granularity
uning strategies inside the fusion checking for unexpectedly dynamic
hecking workloads, making it more general and applicable.

RediT authorship contribution statement

Lingyu Zhang: Conceptualization, Software, Validation, Writing –
riginal draft. Huiyan Wang:Methodology, Writing – review & editing,
ormal analysis, Funding acquisition. Chuyang Chen: Investigation,
riting – review & editing. Chang Xu: Resources, Writing, Supervision,

unding acquisition. Ping Yu: Investigation, Funding acquisition.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
hang Xu, Ping Yu report financial support was provided by Natural
cience Foundation of China. Huiyan Wang reports financial support
as provided by Leading-edge Technology Program of Jiangsu Natural
cience Foundation.

ata availability

Data will be made available on request.

cknowledgments

This work was supported by the Natural Science Foundation of
hina under Grant Nos. 61932021 and 62072225, and the Leading-
dge Technology Program of Jiangsu Natural Science Foundation under
rant Nos. BK20202001 and BK20220771. The authors would also

ike to thank the support from the Fundamental Research Funds for
he Central Universities of China (020214380102 and 020214912220),
nd Collaborative Innovation Center of Novel Software Technology and
ndustrialization, Jiangsu, China.

ppendix

This appendix is to complement our main article with more details
n INFuse’s fusion checking and time complexity analyses of different
hecking techniques. In the following, we first give definitions for
ecessary functions and operators, and then elaborate on the checking
emantics for INFuse’s truth value evaluation and link generation (for
ther formula types, not discussed in the main article). In the end, we
20

ive time complexity analyses for existing checking techniques. f
.1. Functions and operators

We define necessary functions and operators below.

.1.1. Affected function
As aforementioned, we define the Affected function to indicate

hether a formula itself or its nested subformula is affected by the
ontext changes given in a constraint checking task. Consider a specific
ormula inside a consistency constraint. The Affected function returns
𝑇 (meaning True), if and only if the formula itself or any of its
contained subformula(s) references a context involved in any 𝐴𝑆𝑒𝑡,
𝐷𝑆𝑒𝑡, or 𝑈𝑆𝑒𝑡 associated with this constraint; otherwise, it returns F
(meaning False). Formally,

• Affected(∀∕∃𝑣 ∈ 𝐶(𝑓)) = T, if 𝐴𝑆𝑒𝑡 ≠ ∅ or 𝐷𝑆𝑒𝑡 ≠ ∅ or 𝑈𝑆𝑒𝑡 ≠ ∅
or Affected(𝑓) = T; otherwise, F.

• Affected((𝑓1) and/or/implies (𝑓2)) = T, if Affected(𝑓1) = T
or Affected(𝑓2) = T; otherwise, F.

• Affected(not (𝑓)) = T, if Affected(𝑓) = T; otherwise, F.
• Affected(𝑏𝑓𝑢𝑛𝑐(𝑣1, 𝑣2,… , 𝑣𝑛)) = F.

.1.2. Flip and FlipSet functions
We define the Flip function to reverse a link’s linkType without

hanging the link’s variable assignments, and the FlipSet function is
sed to apply the Flip function to each link in a link set. Formally,

• Flip(violated, variable assignments) = (satisfied, variable assign-
ments).

• Flip(satisfied, variable assignments) = (violated, variable assign-
ments).

• FlipSet(𝑆) = {𝖥𝗅𝗂𝗉(𝑙) | 𝑙 ∈ 𝑆}.

.1.3. Type and assignments functions
We define the Type and Assignments functions to retrieve a link’s

pecific linkType and variable assignments information from a given
ink, respectively, i.e.,

• Type(𝗅) = 𝑙.linkType.
• Assignments(𝗅) = 𝑙.variable assignments.

.1.4. Concatenate function and ⊗ operator
We define the Concatenate function to combine two links with the

ame linkType into a new link, consisting of this linkType and the union
f all concerned variable assignments from the two links. Further, the

operator concatenates two link sets by applying the Concatenate
unction to the link pairs formed by every link from set 𝑆1 and every
ink from set 𝑆2, i.e.,

• Concatenate(𝑙1, 𝑙2) = (Type(𝑙1), Assignments(𝑙1) ∪ Assign-
ments(𝑙2)).

• 𝑆1 ⊗ 𝑆2 = {𝖢𝗈𝗇𝖼𝖺𝗍𝖾𝗇𝖺𝗍𝖾(𝑙1, 𝑙2) | 𝑙1 ∈ 𝑆1 ∧ 𝑙2 ∈ 𝑆2}, if 𝑆1 ≠ ∅ and
𝑆2 ≠ ∅; otherwise, 𝑆1 ∪ 𝑆2.

.2. Truth value evaluation

In the following, we give INFuse’s truth value evaluation semantics
or the ∃, or, and implies formulas (we have earlier introduced the
emantics for other formula types, i.e., ∀, and, not, and 𝑏𝑓𝑢𝑛𝑐, in
ection 3.3).

.2.1. Existential formula, i.e., ∃𝑣 ∈ 𝐶(𝑓)
Figs. 29 and 30 give INFuse’s entire and partial truth value eval-

ation semantics for the existential formula. Similar to that for the
niversal formula we discussed earlier, this semantics also invokes
𝗏𝖺𝗅𝖾𝗇𝗍𝗂𝗋𝖾 or 𝖾𝗏𝖺𝗅𝗉𝖺𝗋𝗍𝗂𝖺𝗅 functions (shown in Fig. 31) to calculate truth values

or subformula 𝑓 concerning different elements.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Fig. 29. INFuse’s entire truth value evaluation semantics for the existential formula.
Fig. 30. INFuse’s partial truth value evaluation semantics for the existential formula.
i
e

A

Fig. 31. Semantics of the eval functions (entire and partial checking).

Fig. 32. INFuse’s entire truth value evaluation semantics for or and implies
formulas.

A.2.2. or and implies formulas , i.e., (𝑓1) or/implies (𝑓2)
Fig. 32 gives INFuse’s entire truth value evaluation semantics for the

two formulas. Similar to the and formula, or and implies formulas
reference no direct context, and we only need to consider the Affected
function on their subformulas 𝑓1 and 𝑓2. Incremental evaluation would
be applied to the affected subformulas, as shown in Fig. 33.

A.3. Link generation

In the following, we give INFuse’s link generation semantics for
other formulas not discussed earlier (i.e., ∃, and, or, implies, not,
𝑏𝑓𝑢𝑛𝑐), while the ∀ formula has been introduced Section 3.3.

A.3.1. Existential formula , i.e., ∃𝑣 ∈ 𝐶(𝑓)
21
Fig. 33. INFuse’s partial truth value evaluation semantics for or and implies
formulas.

Figs. 34 and 35 give INFuse’s entire and partial link generation
semantics for the existential formula. Similar to that for the universal
formula, it also invokes the 𝗀𝖾𝗇𝖾𝗇𝗍𝗂𝗋𝖾 and 𝗀𝖾𝗇𝗉𝖺𝗋𝗍𝗂𝖺𝗅 functions (shown
n Fig. 36) to generate links for subformula 𝑓 concerning different
lements.

.3.2. and , or, and implies formulas , i.e., (𝑓1) and/or/implies
(𝑓2)

For ease of understanding, we take the and formula as an example
to explain the principles in its link generation:

• If both 𝑓1 and 𝑓2 are evaluated to true, they together decide the
satisfaction of this and formula. Then, the ⊗ operator is used to
generate links that explain the formula’s satisfaction.

• If both 𝑓1 and 𝑓2 are evaluated to false, either of them can decide
the violation of this and formula. Then, the union of links from
𝑓1 and 𝑓2 explains the formula’s violation.

• If one subformula is evaluated to true and the other is evaluated to
false, then the latter can decide the violation of this and formula.
Then, links coming from the latter explain the formula’s violation.

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Fig. 34. INFuse’s entire link generation semantics for the existential formula.
Fig. 35. INFuse’s partial link generation semantics for the existential formula.
F

𝑟
t
t
o

c
i
a

Fig. 36. Semantics of the gen functions (entire and partial checking).

The principles for the or and implies formulas are similar. We
thus give INFuse’s entire link generation semantics for these three
formulas in Fig. 37.

Similar to INFuse’s truth value evaluation semantics for the three
formulas, INFuse can also conduct incremental link generation accord-
ing to the Affected function on subformulas 𝑓1 and 𝑓2. We similarly
give INFuse’s partial link generation semantics for the and, or, and
implies formulas in Fig. 38, Fig. 39, and Fig. 40 respectively.
22

𝑟

not and 𝑏𝑓𝑢𝑛𝑐 formulas , i.e, not (𝑓) and 𝑏𝑓𝑢𝑛𝑐(𝑣1,… , 𝑣𝑛)
Fig. 41 gives INFuse’s entire link generation semantics for the not

and 𝑏𝑓𝑢𝑛𝑐 formulas. For the not formula, it inverts the linkType of
links coming from its subformula 𝑓 . For the 𝑏𝑓𝑢𝑛𝑐 formula, it always
generates an empty link set since the links that contain variables in the
𝑏𝑓𝑢𝑛𝑐 formula are supposed to be generated where these variables are
defined (i.e., at upper-layer universal and existential formulas). Fig. 42
gives INFuse’s partial link generation semantics for the two formulas.
or the not formula, the Affected function on its subformula 𝑓 would

internally decide the reusability of its previously generated links. The
𝑏𝑓𝑢𝑛𝑐 formula would still generate an empty link set.

A.4. Time complexity analysis

In the following, we give the time complexity analysis of existing
checking techniques. We use the same notations in Section 3.4 in our
main article so that we can reuse some analysis results. As mentioned
in our main article, our base idea is that we assume that the number
of nodes in one sub-tree of node 𝑟 and the number of sub-trees of node

both increase or decrease evenly so that we can use their averages
o estimate the time complexity for one single context change, and
hen estimate the overall time complexity by multiplying the number
f context changes.

Specifically, to estimate the averaged time complexity for one single
ontext change, we need to know: (1) the average number of nodes
n one sub-tree of node 𝑟 per context change (let it be 𝑁), (2) the
verage number of added or removed nodes in one sub-tree of node
per context change (let it be 𝛥), (3) the average number of updated

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

C
o

3

F
c
(
b
c

3

O
w
p

(

t

t
𝑂

Fig. 37. INFuse’s entire link generation semantics for and, or, and implies formulas.

Fig. 38. INFuse’s partial link generation semantics for the and formula.

(i.e., reevaluating truth values and regenerating links) nodes in one
sub-tree of node 𝑟 per context change (let it be 𝑈), (4) the average
number of sub-trees of node 𝑟 per context change (let it be 𝐵). Since
ECC conducts full checking (i.e., visiting every node three times) upon
every single change, its time complexity of one single change is:

3 ⋅𝑁 ⋅ 𝐵 (23)
23
Fig. 39. INFuse’s partial link generation semantics for the or formula.

onC spreads the complexity into 𝐵 threads, thus, its time complexity
f one single change is:

⋅𝑁 (24)

or PCC, it has to consider two cases. On the one hand, if the context
hange is an addition change, PCC would visit new added nodes
i.e., the number is 𝛥) three times and updated nodes (i.e., the num-
er is 𝑈) twice. Typically, adding new nodes dominates the time
omplexity. Therefore, its time complexity of one single change is:

⋅ 𝛥 ⋅ 𝐵 (25)

n the other hand, if the context change is a deletion change, PCC
ould remove 𝛥 nodes and update 𝑈 nodes. Therefore, its time com-
lexity of one single change is:

1 ⋅ 𝛥 + 2 ⋅ 𝑈) ⋅ 𝐵 (26)

In the following, we estimate the time complexity of existing checking
echniques in concrete cases based on the above analysis.
Parallel structure. Based on Eq. (9) in the main article, initially,

he number of nodes in one sub-tree of node 𝑟 is
(𝑒
∑𝑘−1

𝑖=1 ℎ𝑖) = 𝑂(
𝑛0
𝑒
).

(1) Only 𝐴𝑆𝑒𝑡 changes. In this case, the number of nodes in one
sub-tree of node 𝑟 changes from 𝑂(

𝑛0
𝑒
) to 𝑂(𝑒 + 𝑎

𝑒
⋅
𝑛0
𝑒
) evenly.

Therefore, the average number of that (a.k.a, 𝑁) is 𝑂(2𝑒 + 𝑎
2𝑒

⋅
𝑛0
𝑒
),

and the number of newly added nodes is 𝑂(𝑎
𝑒
⋅
𝑛0
𝑒
). Since 𝐴𝑆𝑒𝑡 is

regarded as a list containing 𝑂(𝑘𝑎) addition changes, the average
number of newly added nodes in one sub-tree per change (a.k.a,
𝛥) is 𝑂(1

𝑘𝑒
⋅
𝑛0
𝑒
) Similarly, the number of sub-tree of node 𝑟

changes from 𝑂(𝑒) to 𝑂(𝑒 + 𝑎), thus, the average number of that
(a.k.a, 𝐵) is 𝑂(2𝑒 + 𝑎

2
). Based on the time complexity analysis

of INFuse in our main article, if every context is affected by

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

f

Fig. 40. INFuse’s partial link generation semantics for the implies formula.
Fig. 41. INFuse’s entire and partial link generation semantics for not and 𝑏𝑓𝑢𝑛𝑐
ormulas.

Fig. 42. INFuse’s partial link generation semantics for not and 𝑏𝑓𝑢𝑛𝑐 formulas.

one context change respectively, the average number of updated
nodes is 𝑂(1

2
∑𝑘−1

𝑖=1 (ℎ−ℎ𝑖)). Since there are 𝑘 contexts in total, the
average number of updated nodes per context change (a.k.a, 𝑈) is
𝑂(1

2𝑘
∑𝑘−1

𝑖=1 (ℎ−ℎ𝑖)). Therefore, we can estimate time complexities
of existing techniques for one single context change as follows:

𝐸𝐶𝐶𝑠𝑖𝑛𝑔𝑙𝑒 = 3 ⋅𝑂(2𝑒 + 𝑎
2𝑒

⋅
𝑛0
𝑒
) ⋅𝑂(2𝑒 + 𝑎

2
) = 𝑂(

3(2𝑒 + 𝑎)2

4𝑒
⋅
𝑛0
𝑒
) (27)

𝐶𝑜𝑛𝐶𝑠𝑖𝑛𝑔𝑙𝑒 = 3 ⋅ 𝑂(2𝑒 + 𝑎
2𝑒

⋅
𝑛0
𝑒
) = 𝑂(

3(2𝑒 + 𝑎)
2𝑒

⋅
𝑛0
𝑒
) (28)

𝑃𝐶𝐶𝑠𝑖𝑛𝑔𝑙𝑒 = 3 ⋅ 𝑂(1
𝑘𝑒

⋅
𝑛0
𝑒
) ⋅ 𝑂(2𝑒 + 𝑎

2
) = 𝑂(

3(2𝑒 + 𝑎)
2𝑘𝑒

⋅
𝑛0
𝑒
) (29)

Since there are 𝑂(𝑘𝑎) context changes in total, the overall time
complexity of existing techniques are as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑎(2𝑒 + 𝑎)2

4𝑒
⋅
𝑛0
𝑒
) (30)

𝐶𝑜𝑛𝐶 = 𝑂(
3𝑘𝑎(2𝑒 + 𝑎)

⋅
𝑛0) (31)
24

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 2𝑒 𝑒
𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑎(2𝑒 + 𝑎)

2𝑒
⋅
𝑛0
𝑒
) (32)

(2) Only 𝐷𝑆𝑒𝑡 changes. The only difference between this case and the
𝐴𝑆𝑒𝑡 case is that some nodes are removed instead of newly added.
Therefore, we can similarly obtain the following expressions: 𝑁 =
𝑂(2𝑒 − 𝑑

2𝑒
⋅
𝑛0
𝑒
), 𝛥 = 𝑂(1

𝑒𝑘
⋅
𝑛0
𝑒
), 𝐵 = 𝑂(2𝑒 − 𝑑

2
), and 𝑈 = 𝑂(1

2𝑘𝑒
⋅
𝑛0
𝑒
).

Consequently, the overall time complexity of existing techniques
are as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑑(2𝑒 − 𝑑)2

4𝑒
⋅
𝑛0
𝑒
) (33)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑑(2𝑒 − 𝑑)

2𝑒
⋅
𝑛0
𝑒
) (34)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
𝑑(2𝑒 − 𝑑)

𝑒
⋅
𝑛0
𝑒
) (35)

(3) Only 𝑈𝑆𝑒𝑡 changes. Since 𝑈𝑆𝑒𝑡 is regarded as a list containing
𝑂(𝑘𝑢) deletion changes and then 𝑂(𝑘𝑢) addition changes, we can
consider this case as a 𝐷𝑆𝑒𝑡 case and its reverse. Therefore, by
adapting the analysis from the 𝐷𝑆𝑒𝑡 case, we can estimate the
overall time complexity of existing techniques in this case as
follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑢(2𝑒 − 𝑢)2

2𝑒
⋅
𝑛0
𝑒
) (36)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑢(2𝑒 − 𝑢)

𝑒
⋅
𝑛0
𝑒
) (37)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑢(2𝑒 − 𝑢)

𝑒
⋅
𝑛0
𝑒
) (38)

Nested structure. Based on Eq. (15) in the main article, the number
of nodes in one sub-tree of node 𝑟 is 𝑂(1

2
ℎ𝑒𝑘−1) = 𝑂(

𝑛0
𝑒
).

(1) Only 𝐴𝑆𝑒𝑡 changes. In this case, the number of nodes in one sub-
tree of node 𝑟 changes from 𝑂(

𝑛0
𝑒
) to 𝑂((𝑒 + 𝑎

𝑒
)𝑘−1

𝑛0
𝑒
) evenly.

Therefore, 𝑁 = 𝑂(1
2
(1 + (𝑒 + 𝑎

𝑒
)𝑘−1)

𝑛0
𝑒
). Since the exponent ex-

pression grows rapidly, (𝑒 + 𝑎)𝑘−1 is supposed to be much greater

𝑒

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.

R

B

B

B

C

C

C

C

C

C

C

D

D

D

F

G

H

J

J

K

K

K

L

L

L

than 1. Therefore, we roughly estimate 𝑁 as 𝑂(1
2
(𝑒 + 𝑎

𝑒
)𝑘−1

𝑛0
𝑒
).

Similarly, we can estimate 𝛥 as 𝑂(1
𝑘𝑎

(𝑒 + 𝑎
𝑒

)𝑘−1
𝑛0
𝑒
) and 𝑈 as

𝑂(1
2𝑘𝑒

(𝑒 + 𝑎
𝑒

)𝑘−2
𝑛0
𝑒
). 𝐵 is 𝑂(2𝑒 + 𝑎

2
), which is the same to that in

𝐴𝑆𝑒𝑡 case on parallel structure. Therefore, we can estimate the
overall time complexity of existing techniques as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑎(2𝑒 + 𝑎)

4
(𝑒 + 𝑎

𝑒
)𝑘−1 ⋅

𝑛0
𝑒
) (39)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(3𝑘𝑎
2

(𝑒 + 𝑎
𝑒

)𝑘−1 ⋅
𝑛0
𝑒
) (40)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3(2𝑒 + 𝑎)

2
(𝑒 + 𝑎

𝑒
)𝑘−1 ⋅

𝑛0
𝑒
) (41)

(2) Only 𝐷𝑆𝑒𝑡 changes. In this case, the number of nodes in one sub-
tree of node 𝑟 decreases from 𝑂(

𝑛0
𝑒
) to 𝑂((𝑒 − 𝑑

𝑒
)𝑘−1

𝑛0
𝑒
). Since

𝑒 − 𝑑
𝑒

< 1 and exponent expression changes rapidly, (𝑒 − 𝑑
𝑒

)𝑘−1

is supposed to be much less than 1. Therefore, we can similarly
obtain the following expressions: 𝑁 = 𝑂(1

2
⋅
𝑛0
𝑒
), 𝛥 = 𝑂(1

𝑘𝑑
⋅
𝑛0
𝑒
),

𝐵 = 𝑂(2𝑒 − 𝑑
2

), and 𝑈 = 𝑂(1
2𝑘𝑒

⋅
𝑛0
𝑒
). Then the overall time

complexity of existing techniques are as follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑑(2𝑒 − 𝑑)

4
⋅
𝑛0
𝑒
) (42)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(3𝑘𝑑
2

⋅
𝑛0
𝑒
) (43)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
(𝑒 + 𝑑)(2𝑒 − 𝑑)

2𝑒
⋅
𝑛0
𝑒
) (44)

(3) Only 𝑈𝑆𝑒𝑡 changes. Considering this case as a 𝐷𝑆𝑒𝑡 case and
its reverse, we can adapt the analysis from the 𝐷𝑆𝑒𝑡 case and
estimate the overall time complexity of existing techniques as
follows:

𝐸𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(
3𝑘𝑢(2𝑒 − 𝑢)

2
⋅
𝑛0
𝑒
) (45)

𝐶𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(3𝑘𝑢 ⋅
𝑛0
𝑒
) (46)

𝑃𝐶𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑂(4𝑒
2 − 𝑢2

𝑒
⋅
𝑛0
𝑒
) (47)

eferences

ashir, R.S., Lee, S.P., ur Rehman Khan, S., Chang, V., Farid, S., 2016. UML models
consistency management: Guidelines for software quality manager. Int. J. Inf.
Manag. 36 (6), 883–899. http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.024.

run, Y., Holmes, R., Ernst, M.D., Notkin, D., 2011. Proactive detection of collaboration
conflicts. In: Gyimóthy, T., Zeller, A. (Eds.), SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13th European Software Engineering Conference (ESEC-13). Szeged, Hungary,
September 5-9, 2011, ACM, pp. 168–178. http://dx.doi.org/10.1145/2025113.
2025139.

u, Y., Gu, T., Tao, X., Li, J., Chen, S., Lu, J., 2006. Managing quality of
context in pervasive computing. In: Sixth International Conference on Quality
Software. QSIC 2006, 26-28 October 2006, Beijing, China, IEEE Computer Society,
pp. 193–200. http://dx.doi.org/10.1109/QSIC.2006.38.

apra, L., Emmerich, W., Mascolo, C., 2003. CARISMA: Context-aware reflective
middleware system for mobile applications. IEEE Trans. Softw. Eng. 29 (10),
929–945. http://dx.doi.org/10.1109/TSE.2003.1237173.

haudhuri, S., Ganjam, K., Ganti, V., Motwani, R., 2003. Robust and efficient fuzzy
match for online data cleaning. In: Ives, Z., Papakonstantinou, Y., Halevy, A.
(Eds.), Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data. San Diego, California, USA, June 9-12, 2003, ACM,
pp. 313–324. http://dx.doi.org/10.1145/872757.872796.

hen, J., Qin, Y., Wang, H., Xu, C., 2022a. Simulation might change your results:
A comparison of context-aware system input validation in simulated and physical
environments. J. Comput. Sci. Technol. 37 (1), 83–105. http://dx.doi.org/10.1007/
s11390-021-1669-1.
25
hen, C., Wang, H., Zhang, L., Xu, C., Yu, P., 2022b. Minimizing link generation in
constraint checking for context inconsistency detection. In: Pastore, F., Zhang, L.
(Eds.), 2022 IEEE International Symposium on Software Reliability Engineering.
ISSRE 2022, Charlotte, North Carolina, USA, Oct-Nov 2022, IEEE, pp. 13–24.

hen, C., Ye, C., Jacobsen, H., 2011. Hybrid context inconsistency resolution
for context-aware services. In: Cook, D., Indulska, J. (Eds.), Ninth Annual
IEEE International Conference on Pervasive Computing and Communications,
PerCom 2011, 21-25 March 2011, Seattle, WA, USA, Proceedings. IEEE,
pp. 10–19. http://dx.doi.org/10.1109/PERCOM.2011.5767574.

homicki, J., Lobo, J., Naqvi, S.A., 2003. Conflict resolution using logic programming.
IEEE Trans. Knowl. Data Eng. 15 (1), 244–249. http://dx.doi.org/10.1109/TKDE.
2003.1161596.

hun, C., Jeon, K.M., Kim, T., Choi, W., 2019. Drone noise reduction using deep
convolutional autoencoder for UAV acoustic sensor networks. In: Abdelzaher, T.,
Wang, X., Demirkol, I. (Eds.), 16th IEEE International Conference on Mobile Ad
Hoc and Sensor Systems Workshops. MASS Workshops 2019, Monterey, CA, USA,
November 4-7, 2019, IEEE, pp. 168–169. http://dx.doi.org/10.1109/MASSW.2019.
00043.

arcy, P., Stantic, B., Sattar, A., 2011. An intelligent approach to handle False-Positive
Radio Frequency Identification Anomalies. Intell. Data Anal. 15 (6), 931–954.
http://dx.doi.org/10.3233/IDA-2011-0503.

avies, A., 2017. The numbers don’t lie: Self-driving cars are getting good. https:
//www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/.

emuth, A., Riedl-Ehrenleitner, M., Egyed, A., 2016. Efficient detection of incon-
sistencies in a multi-developer engineering environment. In: Lo, D., Apel, S.,
Khurshid, S. (Eds.), Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ASE 2016, Singapore, September 3-7, 2016,
ACM, pp. 590–601. http://dx.doi.org/10.1145/2970276.2970304.

escioglu-Ünver, N., Choi, S.H., Sheen, D., Kumara, S.R.T., 2015. RFID in production
and service systems: Technology, applications and issues. Inf. Syst. Front. 17 (6),
1369–1380. http://dx.doi.org/10.1007/s10796-014-9518-1.

uo, B., Wang, H., Xu, C., Lu, J., 2017. GEAS: generic adaptive scheduling for high-
efficiency context inconsistency detection. In: Mei, H., Zhang, L., Zimmermann, T.
(Eds.), 2017 IEEE International Conference on Software Maintenance and Evolution.
ICSME 2017, Shanghai, China, September 17-22, 2017, IEEE Computer Society, pp.
137–147. http://dx.doi.org/10.1109/ICSME.2017.10.

andley, H.A.H., Khallouli, W., Huang, J., Edmonson, W., Kibret, N., 2021. Maintaining
the consistency of sysml model exports to XML metadata interchange (XMI).
In: Rassa, B., Givigi, S. (Eds.), IEEE International Systems Conference. SysCon
2021, Vancouver, BC, Canada, April 15 - May 15, 2021, IEEE, pp. 1–8. http:
//dx.doi.org/10.1109/SysCon48628.2021.9447105.

effery, S.R., Garofalakis, M.N., Franklin, M.J., 2006. Adaptive cleaning for RFID
data streams. In: Dayal, U., Whang, K., Lomet, D.B., Alonso, G., Lohman, G.M.,
Kersten, M.L., Cha, S.K., Kim, Y. (Eds.), Proceedings of the 32nd International
Conference on Very Large Data Bases. Seoul, Korea, September 12-15, 2006, ACM,
pp. 163–174, URL: http://dl.acm.org/citation.cfm?id=1164143.

ongeling, R., Ciccozzi, F., Cicchetti, A., Carlson, J., 2019. Lightweight consistency
checking for agile model-based development in practice. J. Object Technol. 18 (2),
11:1–20. http://dx.doi.org/10.5381/jot.2019.18.2.a11.

ehrer, T., Kelter, U., Taentzer, G., 2013. Consistency-preserving edit scripts in model
versioning. In: Denney, E., Bultan, T., Zeller, A. (Eds.), 2013 28th IEEE/ACM
International Conference on Automated Software Engineering. ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, IEEE, pp. 191–201. http://dx.doi.org/10.
1109/ASE.2013.6693079.

helladi, D.E., Kretschmer, R., Egyed, A., 2019. Detecting and exploring side effects
when repairing model inconsistencies. In: Nierstrasz, O., Gray, J., d. S. Oliveira, B.C.
(Eds.), Proceedings of the 12th ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2019, Athens, Greece, October 20-22, 2019, ACM, pp.
113–126. http://dx.doi.org/10.1145/3357766.3359546.

uo, P., Lin, S., Hu, J., Huang, C., 2021. Multi-sensor context-aware based chatbot
model: An application of humanoid companion robot. Sensors 21 (15), 5132.
http://dx.doi.org/10.3390/s21155132.

ahmeri, M., Kishk, M.A., Alouini, M., 2022. Charging techniques for UAV-assisted data
collection: Is laser power beaming the answer? IEEE Commun. Mag. 60 (5), 50–56.
http://dx.doi.org/10.1109/MCOM.001.2100871.

e, H.A., Dao, T., Truong, N., 2017. A formal approach to checking consistency in
software refactoring. Mob. Netw. Appl. 22 (2), 356–366. http://dx.doi.org/10.
1007/s11036-017-0807-z.

i, Y., Wang, S., Nguyen, T.N., 2021. A context-based automated approach
for method name consistency checking and suggestion. In: Juristo, N., van
Deursen, A., Xie, T. (Eds.), 43rd IEEE/ACM International Conference on
Software Engineering. ICSE 2021, Madrid, Spain, 22-30 May 2021, IEEE,
pp. 574–586. http://dx.doi.org/10.1109/ICSE43902.2021.00060.

http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.024
http://dx.doi.org/10.1145/2025113.2025139
http://dx.doi.org/10.1145/2025113.2025139
http://dx.doi.org/10.1145/2025113.2025139
http://dx.doi.org/10.1109/QSIC.2006.38
http://dx.doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1145/872757.872796
http://dx.doi.org/10.1007/s11390-021-1669-1
http://dx.doi.org/10.1007/s11390-021-1669-1
http://dx.doi.org/10.1007/s11390-021-1669-1
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb7
http://dx.doi.org/10.1109/PERCOM.2011.5767574
http://dx.doi.org/10.1109/TKDE.2003.1161596
http://dx.doi.org/10.1109/TKDE.2003.1161596
http://dx.doi.org/10.1109/TKDE.2003.1161596
http://dx.doi.org/10.1109/MASSW.2019.00043
http://dx.doi.org/10.1109/MASSW.2019.00043
http://dx.doi.org/10.1109/MASSW.2019.00043
http://dx.doi.org/10.3233/IDA-2011-0503
https://www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/
https://www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/
https://www.wired.com/2017/02/california-dmv-autonomous-car-disengagement/
http://dx.doi.org/10.1145/2970276.2970304
http://dx.doi.org/10.1007/s10796-014-9518-1
http://dx.doi.org/10.1109/ICSME.2017.10
http://dx.doi.org/10.1109/SysCon48628.2021.9447105
http://dx.doi.org/10.1109/SysCon48628.2021.9447105
http://dx.doi.org/10.1109/SysCon48628.2021.9447105
http://dl.acm.org/citation.cfm?id=1164143
http://dx.doi.org/10.5381/jot.2019.18.2.a11
http://dx.doi.org/10.1109/ASE.2013.6693079
http://dx.doi.org/10.1109/ASE.2013.6693079
http://dx.doi.org/10.1109/ASE.2013.6693079
http://dx.doi.org/10.1145/3357766.3359546
http://dx.doi.org/10.3390/s21155132
http://dx.doi.org/10.1109/MCOM.001.2100871
http://dx.doi.org/10.1007/s11036-017-0807-z
http://dx.doi.org/10.1007/s11036-017-0807-z
http://dx.doi.org/10.1007/s11036-017-0807-z
http://dx.doi.org/10.1109/ICSE43902.2021.00060

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Limón, Y., Bárcenas, E., Benítez-Guerrero, E., Gomez, J., 2019. Consistency checking
of attention aware systems. In: Galindo, M.J.O., Marcial-Romero, J.R., Cortés, C.Z.,
Parra, P.P. (Eds.), Proceedings of the Twelfth Latin American Workshop on
Logic/Languages, Algorithms and New Methods of Reasoning. Puebla, Mexico,
November 15, 2019, In: CEUR Workshop Proceedings, vol. 2585, CEUR-WS.org,
pp. 13–23, URL: http://ceur-ws.org/Vol-2585/paper2.pdf.

Limón, Y., Bárcenas, E., Benítez-Guerrero, E., Molero, G., 2018. On the consistency of
context-aware systems. J. Intell. Fuzzy Systems 34 (5), 3373–3383. http://dx.doi.
org/10.3233/JIFS-169518.

Mayr-Dorn, C., Kretschmer, R., Egyed, A., Heradio, R., Fernández-Amorós, D., 2021a.
Inconsistency-tolerating guidance for software engineering processes. In: Juristo, N.,
Lago, P., Murphy, G. (Eds.), 43rd IEEE/ACM International Conference on Software
Engineering: New Ideas and Emerging Results. ICSE NIER 2021, Madrid, Spain,
May 25-28, 2021, IEEE, pp. 6–10. http://dx.doi.org/10.1109/ICSE-NIER52604.
2021.00010.

Mayr-Dorn, C., Vierhauser, M., Bichler, S., Keplinger, F., Cleland-Huang, J., Egyed, A.,
Mehofer, T., 2021b. Supporting quality assurance with automated process-centric
quality constraints checking. In: Juristo, N., van Deursen, A., Xie, T. (Eds.),
43rd IEEE/ACM International Conference on Software Engineering. ICSE 2021,
Madrid, Spain, 22-30 May 2021, IEEE, pp. 1298–1310. http://dx.doi.org/10.1109/
ICSE43902.2021.00118.

Mazumdar, N., Roy, S., Nag, A., Singh, J.P., 2022. A buffer-aware dynamic UAV tra-
jectory design for data collection in resource-constrained IoT frameworks. Comput.
Electr. Eng. 100, 107934. http://dx.doi.org/10.1016/j.compeleceng.2022.107934.

Messaoudi, N., Chaoui, A., Bettaz, M., 2017. An approach to UML consistency checking
based on compositional semantics. Int. J. Embed. Real Time Commun. Syst. 8 (2),
1–23. http://dx.doi.org/10.4018/IJERTCS.2017070101.

Murphy, A.L., Picco, G.P., Roman, G., 2006. LIME: a coordination model and middle-
ware supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol.
15 (3), 279–328. http://dx.doi.org/10.1145/1151695.1151698.

Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A., 2002. Xlinkit: a consistency
checking and smart link generation service. ACM Trans. Internet Tech. 2 (2),
151–185. http://dx.doi.org/10.1145/514183.514186.

Patil, K., Bansal, V., Dhateria, V., Narayankhedkar, S., 2015. Probable causes of RFID
tag read unreliability in supermarkets and proposed solutions. In: Zhang, T.,
El-Maleh, K., Wang, H., lav Kisacanin, B. (Eds.), International Conference on In-
formation Processing. IEEE, pp. 392–397. http://dx.doi.org/10.1109/INFOP.2015.
7489414.

pollen Sense, 2022. Pollen Wise - What’s in your air, when and where. https://play.
google.com/store/apps/details?id=com.PollenSense.PollenWise.

Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S., 2006. A deferred cleansing method
for RFID data analytics. In: Dayal, U., Whang, K., Lomet, D.B., Alonso, G.,
Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y. (Eds.), Proceedings of the 32nd
International Conference on Very Large Data Bases. Seoul, Korea, September 12-15,
2006, ACM, pp. 175–186, URL: http://dl.acm.org/citation.cfm?id=1164144.

Reiss, S.P., 2006. Incremental maintenance of software artifacts. IEEE Trans. Softw.
Eng. 32 (9), 682–697. http://dx.doi.org/10.1109/TSE.2006.91.

Tan, Z., Nguyen, A.H.T., Khong, A.W.H., 2019. An efficient dilated convolutional
neural network for UAV noise reduction at low input SNR. In: Zheng, T.F.,
Yu, H., Dang, J., Siu, W., Kiya, H. (Eds.), 2019 Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Conference. APSIPA ASC 2019,
Lanzhou, China, November 18-21, 2019, pp. 1885–1892. http://dx.doi.org/10.
1109/APSIPAASC47483.2019.9023324.

Wang, H., Xu, C., Guo, B., Ma, X., Lu, J., 2021. Generic adaptive scheduling for
efficient context inconsistency detection. IEEE Trans. Softw. Eng. 47 (3), 464–497.
http://dx.doi.org/10.1109/TSE.2019.2898976.

Waymo, 2022. Waymo. https://waymo.com.
Wei, B., Sun, J., 2021. Leveraging SPARQL queries for UML consistency checking.

Int. J. Softw. Eng. Knowl. Eng. 31 (4), 635–654. http://dx.doi.org/10.1142/
S0218194021500170.

Wei, Y., Xue, M., Liu, X., Xu, P., 2022. Data fusing and joint training for learning
with noisy labels. Frontiers of Computer Science 16 (6), 166338. http://dx.
doi.org/10.1007/s11704-021-1208-9, https://journal.hep.com.cn/fcs/EN/abstract/
article_30329.shtml.

Xu, C., Cheung, S., Chan, W.K., 2007a. Goal-directed context validation for adaptive
ubiquitous systems. In: Cheng, B.H., de Lemos, R., Fickas, S., Garlan, D., Litoiu, M.,
Magee, J., Müller, H.A., Taylor, R.N. (Eds.), 2007 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS 2007, Minneapolis
Minnesota, USA, May 20-26, 2007, IEEE Computer Society, p. 17. http://dx.doi.
org/10.1109/SEAMS.2007.8.

Xu, C., Cheung, S.C., Chan, W.K., Ye, C., 2007b. On impact-oriented automatic
resolution of pervasive context inconsistency. In: Crnkovic, I., Bertolino, A. (Eds.),
Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2007. Dubrovnik, Croatia, September 3-7, 2007, ACM, pp.
569–572. http://dx.doi.org/10.1145/1287624.1287712.
26
Xu, C., Cheung, S., Chan, W.K., Ye, C., 2008. Heuristics-based strategies for resolving
context inconsistencies in pervasive computing applications. In: 28th IEEE Inter-
national Conference on Distributed Computing Systems. ICDCS 2008, 17-20 June
2008, Beijing, China, IEEE Computer Society, pp. 713–721. http://dx.doi.org/10.
1109/ICDCS.2008.46.

Xu, C., Cheung, S.C., Chan, W.K., Ye, C., 2010. Partial constraint checking for context
consistency in pervasive computing. ACM Trans. Softw. Eng. Methodol. 19 (3),
9:1–9:61. http://dx.doi.org/10.1145/1656250.1656253.

Xu, C., Cheung, S., Lo, C., Leung, K., Wei, J., 2004. Cabot: On the ontology for the
middleware support of context-aware pervasive applications. In: Jin, H., Gao, G.R.,
Xu, Z., Chen, H. (Eds.), Network and Parallel Computing, IFIP International
Conference, NPC 2004, Wuhan, China, October 18-20, 2004, Proceedings. In:
Lecture Notes in Computer Science, vol. x3222, Springer, pp. 568–575. http:
//dx.doi.org/10.1007/978-3-540-30141-7_85.

Xu, C., Cheung, S.C., Ma, X., Cao, C., Lu, J., 2012. Adam: Identifying defects in context-
aware adaptation. J. Syst. Softw. 85 (12), 2812–2828. http://dx.doi.org/10.1016/
j.jss.2012.04.078.

Xu, C., Liu, Y., Cheung, S.C., Cao, C., Lv, J., 2013. Towards context consistency by
concurrent checking for internetware applications. Sci. China Inf. Sci. 56 (8), 1–20.
http://dx.doi.org/10.1007/s11432-013-4907-5.

Xu, C., Ma, X., Cao, C., Lu, J., 2011. Minimizing the side effect of context inconsistency
resolution for ubiquitous computing. In: Puiatti, A., Gu, T. (Eds.), Mobile and
Ubiquitous Systems: Computing, Networking, and Services - 8th International
ICST Conference. MobiQuitous 2011, Copenhagen, Denmark, December 6-9, 2011,
Revised Selected Papers, In: Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol. 104, Springer, pp.
285–297. http://dx.doi.org/10.1007/978-3-642-30973-1_29.

Xu, C., Qin, Y., Yu, P., Cao, C., Lu, J., 2020. Theories and techniques for growing
software: Paradigm and beyond. Sci. Sin. Inf. 50 (11), 1595–1611.

Xu, C., Xi, W., Cheung, S., Ma, X., Cao, C., Lu, J., 2015. Cina: Suppressing the detection
of unstable context inconsistency. IEEE Trans. Softw. Eng. 41 (9), 842–865. http:
//dx.doi.org/10.1109/TSE.2015.2418760.

Yoon, I., Noh, D.K., 2022. Adaptive data collection using UAV with wireless power
transfer for wireless rechargeable sensor networks. IEEE Access 10, 9729–9743.
http://dx.doi.org/10.1109/ACCESS.2022.3144846.

Zhang, L., Wang, H., Xu, C., Yu, P., 2022. INFUSE: towards efficient context consistency
by incremental-concurrent check fusion. In: Avgeriou, P., Binkley, D. (Eds.), 2022
IEEE International Conference on Software Maintenance and Evolution. ICSME
2022, Limassol, Cyprus, October, 2022, IEEE, pp. 187–198.

Lingyu Zhang is a Ph.D. student with the Department of
Computer Science and Technology at Nanjing University,
China. He received his B.Sc. degree in computer science and
technology from Nanjing University in 2021. His research
interests include software consistency management, software
testing and analysis, and software methodologies.

Huiyan Wang received her doctoral degree in computer
science and engineering from Nanjing University, China.
She is now an assistant researcher with the Department of
Computer Science and Technology at Nanjing University,
China. Her research interests include intelligent software
quality assurance, context management, software analyses
and testing.

Chuayang Chen is a M.Sc. student with the Department
of Computer Science and Technology at Nanjing University,
China. He received his B.Sc. degree in 2020 and began his
M.Sc. program under the supervision of assistant researcher
Huiyan Wang and professor Chang Xu.

http://ceur-ws.org/Vol-2585/paper2.pdf
http://dx.doi.org/10.3233/JIFS-169518
http://dx.doi.org/10.3233/JIFS-169518
http://dx.doi.org/10.3233/JIFS-169518
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00010
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00010
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00010
http://dx.doi.org/10.1109/ICSE43902.2021.00118
http://dx.doi.org/10.1109/ICSE43902.2021.00118
http://dx.doi.org/10.1109/ICSE43902.2021.00118
http://dx.doi.org/10.1016/j.compeleceng.2022.107934
http://dx.doi.org/10.4018/IJERTCS.2017070101
http://dx.doi.org/10.1145/1151695.1151698
http://dx.doi.org/10.1145/514183.514186
http://dx.doi.org/10.1109/INFOP.2015.7489414
http://dx.doi.org/10.1109/INFOP.2015.7489414
http://dx.doi.org/10.1109/INFOP.2015.7489414
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise
https://play.google.com/store/apps/details?id=com.PollenSense.PollenWise
http://dl.acm.org/citation.cfm?id=1164144
http://dx.doi.org/10.1109/TSE.2006.91
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023324
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023324
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023324
http://dx.doi.org/10.1109/TSE.2019.2898976
https://waymo.com
http://dx.doi.org/10.1142/S0218194021500170
http://dx.doi.org/10.1142/S0218194021500170
http://dx.doi.org/10.1142/S0218194021500170
http://dx.doi.org/10.1007/s11704-021-1208-9
http://dx.doi.org/10.1007/s11704-021-1208-9
http://dx.doi.org/10.1007/s11704-021-1208-9
https://journal.hep.com.cn/fcs/EN/abstract/article_30329.shtml
https://journal.hep.com.cn/fcs/EN/abstract/article_30329.shtml
https://journal.hep.com.cn/fcs/EN/abstract/article_30329.shtml
http://dx.doi.org/10.1109/SEAMS.2007.8
http://dx.doi.org/10.1109/SEAMS.2007.8
http://dx.doi.org/10.1109/SEAMS.2007.8
http://dx.doi.org/10.1145/1287624.1287712
http://dx.doi.org/10.1109/ICDCS.2008.46
http://dx.doi.org/10.1109/ICDCS.2008.46
http://dx.doi.org/10.1109/ICDCS.2008.46
http://dx.doi.org/10.1145/1656250.1656253
http://dx.doi.org/10.1007/978-3-540-30141-7_85
http://dx.doi.org/10.1007/978-3-540-30141-7_85
http://dx.doi.org/10.1007/978-3-540-30141-7_85
http://dx.doi.org/10.1016/j.jss.2012.04.078
http://dx.doi.org/10.1016/j.jss.2012.04.078
http://dx.doi.org/10.1016/j.jss.2012.04.078
http://dx.doi.org/10.1007/s11432-013-4907-5
http://dx.doi.org/10.1007/978-3-642-30973-1_29
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb50
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb50
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb50
http://dx.doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1109/TSE.2015.2418760
http://dx.doi.org/10.1109/ACCESS.2022.3144846
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53
http://refhub.elsevier.com/S0164-1212(23)00247-9/sb53

The Journal of Systems & Software 207 (2024) 111852L. Zhang et al.
Chang Xu received his doctoral degree in computer science
and engineering from The Hong Kong University of Science
and Technology, China. He is now a full professor with
the Department of Computer Science and Technology at
Nanjing University, China. His research interests include big
data software engineering, intelligent software testing and
analysis, and adaptive and autonomous software systems.
27
Ping Yu received her doctoral degree in Computer Science
and Technology in 2008 from Nanjing University. She is an
associate professor with the State Key Laboratory for Novel
Software Technology and Department of Computer Science
and Technology at Nanjing University. Her research interests
include intelligent software engineering, cloud computing
and big data technology.

	Incremental-concurrent fusion checking for efficient context consistency
	Introduction
	Background
	Preliminary
	Illustrative Example and Challenges
	Problem Formulation

	Methodology
	Approach Overview
	WHAT-TO-CHECK: Task Arrangement
	HOW-TO-CHECK: Check Fusion
	INFuse Realization Details
	INFuse Complexity Analyses

	Evaluation
	Research Questions
	Experimental Design and Setup
	Experimental Results
	RQ1 (Motivation)
	RQ2 (Effectiveness)
	RQ3 (Fusion Effect)
	RQ4 (Complexity Factor)
	RQ5 (Practical Usage)

	Threats Analysis and Discussion

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	Functions and Operators
	Affected function
	Flip and FlipSet functions
	Type and Assignments functions
	Concatenate function and ⊗ operator

	Truth Value Evaluation
	Existential formula, i.e., ∃v ∈C(f)
	or and implies formulas , i.e., (f1) or/implies (f2)

	Link Generation
	Existential formula , i.e., ∃v ∈C(f)
	and , or, and implies formulas , i.e., (f1) and/or/implies (f2)
	not and bfunc formulas , i.e, not (f) and bfunc(v1, ...,vn)

	Time complexity analysis

	References

