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Abstract—Many applications use contexts to understand their environments and make adaptation. However, contexts are often
inaccurate or even conflicting with each other (a.k.a. context inconsistency). To prevent applications from behaving abnormally or even
failing, one promising approach is to deploy constraint checking to detect context inconsistencies. A variety of constraint checking
techniques have been proposed, based on different incremental or parallel mechanisms for the efficiency. They are commonly
deployed with the strategy that schedules constraint checking immediately upon context changes. This assures no missed
inconsistency, but also limits the detection efficiency. One may break the limit by grouping context changes for checking together, but
this can cause severe inconsistency missing problem (up to 79.2%). In this article, we propose a novel strategy GEAS to isolate latent
interferences among context changes and schedule constraint checking with adaptive group sizes. This makes GEAS not only improve
the detection efficiency, but also assure no missed inconsistency with theoretical guarantee. We experimentally evaluated GEAS with
large-volume real-world context data. The results show that GEAS achieved significant efficiency gains for context inconsistency
detection by 38.8–566.7% (or 1.4x–6.7x). When enhanced with an extended change-cancellation optimization, the gains were up to
2,755.9% (or 28.6x).

Index Terms—Context inconsistency detection, consistency constraint, scheduling strategy, susceptibility/cancellation condition.
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1 INTRODUCTION

W ITH the advances of new sensing and actuation tech-
nologies, many applications (e.g., self-driving vehi-

cles [1], [2], [3] and mobile apps [4]) from cyber-physical,
wireless, and cloud computing fields now become increas-
ingly adaptive. They rely on contexts [5] to understand their
running environments and make smart adaptation to better
serve their users. The contexts typically refer to the values
of concerned environmental attributes (e.g., location and
weather for a self-driving vehicle), which can be used by ap-
plications to decide their current situations (e.g., running on
a slippery road in a raining day) and best next actions (e.g.,
slowing down). One outstanding problem is that contexts,
typically collected from noisy environments, can be easily
inaccurate, incomplete or even conflicting with each other.
This is known as context inconsistency [6], [7], which, if left
unattended, can cause an application’s abnormal adaptation
or even failure.

To address the context inconsistency problem, one
promising approach is to check contexts against predefined
consistency constraints [8], [9] to detect context inconsisten-
cies on behalf of applications. Then problematic contexts
involved in the detected inconsistencies can be identified
in time and then isolated from being accessed by applica-
tions. The constraint checking process is the kernel part of
context inconsistency detection. It is typically required to
be efficient so that timely handling of problematic contexts
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can be supported, e.g., discarding these contexts or fixing
their problems for a self-driving vehicle application. For
this purpose, various constraint checking techniques have
been proposed, such as ECC [8], PCC [6], Con-C [10],
and GAIN [11], based on different incremental or parallel
mechanisms.

These constraint checking techniques are typically de-
ployed with a naı̈ve strategy, which schedules them imme-
diately upon any context change. This immediate scheduling
strategy guarantees in theory no missed context inconsis-
tencies since it captures every possible impact caused by
any context change on the consistency constraints under
checking. However, it at the same time also limits the effi-
ciency of context inconsistency detection due to its frequent
scheduling of constraint checking. In practice, this could
cause it impossible to examine all impacts from numerous
context changes in short time when deployed to heavy-
workload scenarios, making itself actually not usable in
preventing missed context inconsistencies. As our later case
study in the evaluation shows, when handling context
changes from a heavy-workload taxi application scenario,
four constraint checking techniques (i.e., ECC, PCC, Con-
C, and GAIN) combined with the immediate scheduling
strategy were all subject to serious inconsistency missing
and wrongly-reporting problems (52.6–98.7% false negative
and 10.0–60.0% false positive rates, respectively).

To address this problem, one may choose to group
multiple consecutive context changes into one batch, and
check them together for reducing the number of scheduled
constraint checking. This batch-based scheduling strategy can
certainly improve the efficiency of context inconsistency
detection by merging constraint checking for multiple con-
text changes into one. In our later evaluation, when setting
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the batch size to 2, 4, and 6, the efficiency improvement
can be 103.2%, 305.0%, and 508.7%, respectively, which
is desirable. However, this strategy can also cause severe
inconsistency missing problems. This is because the context
changes grouped in one batch may possibly contain latent
interferences among each other, which can lead to some
inconsistencies caused by certain context changes becoming
undetectable due to the presence of other context changes
in the same batch. For example, with the aforementioned
batch size setting (i.e., 2, 4, and 6), the inconsistency missing
rate can be 51.8%, 68.9%, and 74.8%, respectively. This result
is surprisingly negative, severely impacting the quality of
context inconsistency detection. We shall explain its reason
using an illustrative example later in Section 2.4.

To address this efficiency-quality dilemma, in this arti-
cle, we propose a novel strategy, named GEneric Adaptive
Scheduling (GEAS), to both improve the efficiency of context
inconsistency detection and guarantee no missed context
inconsistencies in the detection. GEAS automatically identi-
fies latent interferences among consecutive context changes,
and isolates them by separate batches with adaptive sizes.
Then GEAS schedules constraint checking for such batches,
achieving both efficiency gains and detection quality. Be-
sides, GEAS is generic and can apply to existing constraint
checking techniques (e.g., ECC [8], PCC [6] , Con-C [10], and
GAIN [11]), making it practically useful. We also formally
analyze or prove these properties of GEAS (i.e., efficiency
gain, detection quality, and generality) later in Section 3.

Our key insight behind GEAS is that, since latent inter-
ferences from certain context changes can cause some incon-
sistencies undetectable, one can choose to break such group-
ing, i.e., avoiding letting these changes in the same batch.
By doing so, one can recover such otherwise undetectable
inconsistencies. We observe that only certain combinations
of context changes can form such latent interferences, and
therefore one can derive such combinations in advance and
proactively avoid their presence in context inconsistency de-
tection. We name such combinations susceptibility conditions
(or s-conditions for short), which, once available, one can
use to decide whether to check a new context change with
earlier ones together (i.e., enlarging an existing batch) or
with later ones together (i.e., forming a new batch). This
decision essentially changes the batch size adaptively in
order to avoid the presence of latent interferences among
grouped context changes, thus achieving no missed context
inconsistencies in the detection. For example, in our later
evaluation, GEAS applied s-conditions and formed batches
with adaptive sizes (3.6 on average), improving the de-
tection efficiency and causing no missed inconsistency. As
a comparison, the aforementioned batch-based scheduling
caused an inconsistency missing rate of 51.8% even with its
minimal batch size of two.

Given a sequence of context changes, the s-conditions
form separate batches, each of which contains no latent
interference among any two context changes in the same
batch. Besides, each batch has been maximized in its size
for the detection efficiency. This is with the premise that
all context changes should be checked. Nevertheless, we
observe that some context changes might be redundant in the
sense that one change could generate certain impact right
opposite to that by another change in constraint checking,

e.g., deleting a = 6 generates an opposite impact to adding a
= 7, for a Boolean function that returns (a > 5 ? True : False).
In other words, they form an inter-cancellation relationship
with each other if existing in the same batch. Therefore, one
can choose not to check such change pairs as if both of them
were not present. We name such relationship a cancellation
condition (or c-condition for short). With c-conditions, a se-
quence of batches formed by s-conditions can further be
optimized by that: (1) pairs of context changes that satisfy
the c-conditions are removed, reducing the total number of
context changes that should be checked; (2) some original
batches can be now merged due to the removed changes,
potentially increasing the average batch size. For example,
in our later evaluation, on top of s-conditions, GEAS applied
c-conditions and removed 80.1% total context changes. If
counting these removed changes, GEAS actually increases
its average batch size from 3.6 to 13.7, further improving its
detection efficiency.

Combining our proposed s-conditions and c-conditions,
we evaluate GEAS on a taxi application with large-volume
real-world data. Our experimental results show that GEAS
greatly improved the efficiency of context inconsistency
detection, being 38.8–566.7% (or 1.4x–6.7x) of that of ex-
isting constraint checking techniques (ECC [8], PCC [6],
Con-C [10], and GAIN [11]), when enabling s-conditions
only. When enabling both s-conditions and c-conditions,
the efficiency of GEAS-aided context inconsistency detection
could be up to 2,755.9% (or 28.6x). Note that the efficiency
gains were calculated with GEAS’s overhead (e.g., that for
condition evaluation, batch forming, and checking schedul-
ing) counted in. Besides, these efficiency gains came with no
missed context inconsistencies, validating GEAS’s unique
effectiveness, also incurring very small overhead. Moreover,
we also evaluated GEAS using the taxi data in a case-study
setting (i.e., following actual time restrictions). Besides sig-
nificant efficiency improvement, GEAS also exhibited its
unique superiority over other scheduling strategies on the
quality of inconsistency detection results no matter which
constraint checking technique is combined with. For exam-
ple, when ECC is combined with the immediate scheduling
strategy, it causes 94.4% false negatives and 31.0% false
positives in its detection results, while with our GEAS, ECC
realized perfect false negative and negative rates (both zero),
and at the same time improved the detection efficiency over
1,300% (or 14.0x).

In summary, we make the following contributions in
this article (second, third, and part of fourth ones are major
extensions over GEAS’s preliminary version [12]):

• We propose the notion of susceptibility condition,
and use it to identify and isolate latent interfer-
ences among context changes by adaptive batches,
thus achieving highly-efficient zero-missing context
inconsistency detection.

• We propose the notion of cancellation condition,
and use it to refine the batches by identifying and
removing impact-opposite context changes, further
improving the detection efficiency.

• We formally analyze or prove GEAS’s three prop-
erties, namely, efficiency gain, detection quality, and
generality.
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• We evaluate GEAS’s performance with large-volume
real-world taxi data through both controlled exper-
imentation and case study ways, validating its gen-
eral effectiveness on improving the efficiency of con-
text inconsistency detection and guaranteeing zero
missed inconsistency.

The remainder of this article is organized as follows.
Section 2 introduces background knowledge, gives a mo-
tivating example, and formulates our target problem. Sec-
tion 3 proposes the notion of susceptibility condition, and
based on it presents a novel scheduling strategy, GEAS, to
achieve efficient context inconsistency detection with qual-
ity guarantee. Section 4 extends GEAS for further improved
efficiency by a dedicated cancellation condition based op-
timization. Section 5 experimentally evaluates GEAS’s per-
formance with respect to existing constraint checking tech-
niques, ECC [8], PCC [6], Con-C [10], and GAIN [11], on a
real-world taxi application. Section 6 discusses related issues
on the usage of GEAS in practice. Finally, Section 7 presents
the related work in recent years, and Section 8 concludes
this article.

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce some background knowledge
and define necessary concepts for subsequent discussions.
Then, we present a motivating example to illustrate the
efficiency-quality dilemma in context inconsistency detec-
tion. Finally, we formulate our target problem to solve for
addressing the dilemma.

2.1 Background
Consistency management has been well recognized as an
important research problem in the software engineering
community. Typically, during the development of various
software artifacts (e.g., requirement models, design models,
source code, test cases, and configuration files), inconsisten-
cies or conflicts among these artifacts can naturally arise
due to collaborative or distributed development [13], thus
calling for the need of automatically detecting and resolving
such inconsistencies. Consistency management typically re-
lies on constraint checking techniques, which check a set of
software artifacts under checking against a set of predefined
consistency constraints to see whether any artifact violates
any constraint. Such violation, if detected, is considered as
an inconsistency, which should be handled in time for the
consistency of software artifacts in the development.

Many software artifacts have been extensively studied
for consistency management, which include XML docu-
ments [8], [9], [14], UML models [15], [16], [17], data struc-
tures [18], workflows [19], and distributed source code [20].
When these artifacts are created or changed, they are
checked against consistency constraints by the notion of
rules in order to detect any violation (inconsistency) if
present. For example, xlinkit [8] provided an XML-based
running environment to ensure the consistency of dis-
tributed, heterogeneous Web documents across different
resource types. Later, it was extended to support check-
ing the consistency of general document artifacts during
software development, including design, implementation,

and deployment phases [14]. Another popular example
is the consistency management for UML models, which
are typically used in software development. For instance,
ArgoUML [17] checked static UML models for consistency
against annotated consistency rules, while Blanc et. al. [16]
checked dynamic UML modeling processes in terms of
model construction operations and reported both structural
and methodological inconsistencies.

In the existing literature on consistency management,
most studied software artifacts are static (e.g., XML doc-
uments) or can only change rarely or slowly (e.g., UML
models). The software artifacts studied in this article (con-
texts) are different, which typically change frequently. This
distinguishes contexts from traditional software artifacts,
causing distinct challenges and deserving further research,
as we analyze next with preliminary concepts for subse-
quent discussions.

2.2 Preliminary

Context. A context refers to a piece of environmental or
logical information interesting to an application [6], [7],
[21]. In this article, we model a context as a finite set of
elements, each of which specifies a relevant part of this
context. For illustration, we consider a location-aware pack-
age delivery application, which is adapted from existing
work [7], [22], [23]. The application controls multiple robots
to deliver packages among various warehouses. It arranges
robots for delivery according to their locations (i.e., in which
warehouse) and whether they are free (i.e., just finished a
task). For this application, we can model the robots currently
in a specific warehouse x by a context Cx = {r1, r2, . . .}.
Each element ri identifies each individual robot currently in
warehouse x.

Context change. A context change refers to any change
relating to elements in a specific context. There are three
types of context change, namely, addition change (i.e., adding
a new element into a context), deletion change (i.e., deleting
an existing element from a context), and update change (i.e.,
updating an element’s value). For ease of presentation,
we use “+”, “−”, and “#” to represent the three types,
respectively. For the package delivery application, if robot
r1 enters warehouse x, it will trigger an addition change,
which can be represented as <+, Cx, r1>; if robot r1 leaves
warehouse y, the corresponding change is a deletion one,
represented as <−, Cy, r1>; if r1 just finishes a delivery
task in warehouse z with its status changed to “free”, it will
trigger an update change, represented as <#, Cz, r1, r′1>.

Context pool. We conceptually assume the availability
of a context pool, which collects all contexts interesting to
an application, e.g., three warehouse-robot contexts (Cx,
Cy, and Cz) for the preceding application. Many existing
middleware infrastructures or frameworks [4], [24], [25], [26]
support such pool-alike data structures for context-aware
applications. Maintaining such a context pool helps applica-
tions to access their interesting contexts when necessary and
apply collected context changes to corresponding contexts.

Consistency constraint. For the package delivery appli-
cation, we use radio frequency identification (RFID) tech-
nology [27] to track when a robot enters or leaves a specific
warehouse. Due to the missing or cross read [28], [29], [30],
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[31] and asynchronous read (async read) [7], [32] problems
with RFID data, the derived warehouse-robot contexts can
contain incomplete or inaccurate data, causing context in-
consistency problems. To detect such inconsistencies, we
formulate consistency constraints [8], [9] for specifying nec-
essary properties that must hold about the contexts. One
may specify consistency constraints using a first order logic
(FOL) based constraint language [6], [7] as follows:

f :=∀v ∈ C (f) | ∃v ∈ C (f) |
(f) and (f) | (f) or (f) | (f) implies (f) | not (f) |
bfunc(v1, v2, . . . , vn) | True | False.

Here, C represents a context from an application’s con-
text pool; vi is a variable, which takes an element from a
context as its value; terminal bfunc is a domain-specific
function, which takes values of variables as input and
returns True or False. Consistency constraints are typically
formulated from physical laws or application-specific re-
quirements [6], [8], [9]. For example, regarding our preced-
ing application, one may formulate a consistency constraint
Sloc like “no robot can stay in two warehouses x and y at the
same time” as follows:

Sloc : ∀vx ∈ Cx (not (∃vy ∈ Cy (same(vx, vy)))).

Constraint checking. With consistency constraints for-
mulated, contexts can then be validated by checking them
against the constraints to see whether there is any viola-
tion. If yes, the violated constraint is evaluated to False
(a.k.a., obtaining a truth value of False), and returns a set
of links [8], representing detected context inconsistencies.
Each link explains which particular elements in concerned
contexts cause the constraint’s violation. This process is
named constraint checking [6], [9], [10], [11], which is the
kernel part of inconsistency detection for software artifacts.

Consider the preceding application. Suppose that its
context pool contains two contexts, namely, Cx = {r1, r2}
and Cy = {r3, r4}. Now robot r1 leaves warehouse x and
enters warehouse y. This movement triggers two changes,
i.e., <−, Cx, r1> and <+, Cy, r1>. When applying them,
the application’s contexts become Cx = {r2} and Cy = {r1, r3,
r4}. Now one schedules constraint checking for the current
contexts against consistency constraint Sloc. Then Sloc would
be evaluated to True and there is no context inconsistency.
However, if the change of r1 leaving warehouse x is lost
due to a missing RFID read, r1 would be conjectured still
in warehouse x although it has entered warehouse y. Now
the corresponding contexts are Cx = {r1, r2} and Cy = {r1,
r3, r4}. Checking the contexts against constraint Sloc would
report a context inconsistency by a link containing r1 as the
value for both variables vx and vy, suggesting that robot
r1 appears in two warehouses at the same time. Formally,
such a link is represented as (violated, {(vx, r1), (vy, r1)}), in
which “violated” means that the concerned constraint has
been violated and the part within the pair of braces “{}”
specifies the assignment of value r1 to both variables vx and
vy. We note that our subsequent discussions will not cover
the internal details of such links, and here this link is for
example and illustration only.

2.3 Scheduling Strategy
Typically, constraint checking is scheduled immediately
upon each collected context change. This is known as the
immediate scheduling strategy. Existing constraint checking
techniques (ECC [8], PCC [6], Con-C [10], and GAIN [11])
typically use immediate scheduling for timely detection
of context inconsistency. For the aforementioned two con-
text changes, <−, Cx, r1> and <+, Cy, r1>, immediate
scheduling would schedule constraint checking twice, one
for each change, according to their order. Thus, if there
is any inconsistency that could be caused by any change,
immediate scheduling can detect it in time. However, this
strategy also limits the efficiency of context inconsistency
detection when context changes are very frequent. There-
fore, immediate scheduling can hardly suit heavy-workload
application scenarios.

When context changes are frequent, existing constraint
checking techniques can also choose to check collected
changes by grouping. This strategy is known as batch-based
scheduling. For the aforementioned two context changes,
<−, Cx, r1> and <+, Cy, r1>, batch-based scheduling can
schedule constraint checking only once by taking the two
changes as a whole (i.e., batch size of two). If there is no
context inconsistency that can be caused by the first change,
this treatment can reduce constraint checking once without
any negative consequence.

2.4 Motivating Example
Regarding the preceding two context changes, it is fortunate
that applying them together to the context pool and schedul-
ing constraint checking only once will not miss any context
inconsistency. However, it may not always be the case. In
the following, we modify these context changes to illustrate
what could be negative consequences of such batch-based
scheduling.

Consider three robots, r1, r2, and r3, that deliver packages
among two warehouses, x and y. Initially, no robot stays
in any warehouse. Then, the three robots move as follows:
r1 enters x and then leaves x; r2 enters x, leaves x, and
then enters y; r3 enters y, leaves y, and then enters x.
Unfortunately, some cross, missing, and async RFID reads
occur during this process: r1 is detected to enter y when it
is still in x (cross read); the read is lost when r2 leaves x
(missing read); the reads of r3 leaving y and entering x are
switched in order (async read). These robot movements and
occurring cross, missing, and async reads together lead to
eight context changes, as illustrated in Fig. 1.

Suppose that one uses the preceding constraint Sloc
for governing the consistency of contexts. When applying
these context changes and scheduling constraint checking
upon each change (i.e., immediate scheduling), one can
obtain three inconsistencies, inc1, inc2, and inc3, at chg3,
chg6, and chg7, respectively, as illustrated in Fig. 1. This
result is desirable, as the detected context inconsistencies
are complete for this example. However, real-world package
delivery applications like the Amazon Kiva system [33], [34]
are much more complex. They can control hundreds or even
thousands of robots across numerous warehouse regions at
the same time. This causes an extremely high context change
rate (e.g., up to 500 changes per second according to the
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Fig. 1: Illustrative scenario − inconsistency missing problem with batch-based scheduling.

news on the STO express sorting system [35], [36] in China).
For such frequent context changes, immediate scheduling of
constraint checking can hardly apply.

To reduce the number of scheduled constraint checking,
one can choose batch-based scheduling. For example, we
set the batch size to two, and thus only need to schedule
constraint checking four times, i.e., at chg2, chg4, chg6, and
chg8, respectively, as illustrated in Fig. 1. This treatment
dramatically reduces the number of constraint checking by
half (i.e., almost 100% efficiency improvement). However,
this also leads to only inc2 being detected, with inc1 and
inc3 missed (i.e., 66.7% missing rate).

To address this efficiency-quality dilemma, a desirable
strategy should schedule constraint checking only twice, at
chg3 and chg7, respectively. This treatment can correctly
detect all inconsistencies (i.e., zero missing rate) and at
the same time greatly improve the efficiency (i.e., almost
300%). Nevertheless, how can one achieve such a desirable
strategy? In the following, we formulate this problem and
discuss how to solve it for achieving this desirable strategy.

2.5 Problem Formulation
To formulate our problem, we first explain how a context
pool P evolves with collected context changes. Suppose that
the whole process starts at time point t0 and each context
change is collected at a distinct time point after t0 (i.e., chgi
is collected at time point ti). We use Pi to represent the
updated context pool at time point ti after applying chgi to
the contexts in the pool (let P0 be the initial context pool).
Then, Pi+1 = apply(Pi, chgi+1).

We then define two concepts, RCC (constraint checking
result) and RID (inconsistency detection result). The former
RCC (s, P , t) represents the constraint checking result of
the contexts in pool P at time point t against consistency
constraint s, which is a set of detected context inconsisten-
cies for this particular checking. For example, in immediate
scheduling, the RCC value is ∅ when checking P at chg2
(i.e., P2) against Sloc, and is {inc2} for P6, as illustrated in

Fig. 1. The latter RID(s, P , t) represents the inconsistency
detection result, which is the set of all context inconsisten-
cies ever detected for the contexts in pool P by time point t
against consistency constraint s. For example, in immediate
scheduling, the RID value is {inc1} for t = 4 and {inc1, inc2,
inc3} for t = 8.

We note that: (1) RCC and RID values are related
with each other, and (2) they also rely on the scheduling
strategy used for constraint checking. We formulate such
relationships as follows. Given a scheduling strategy, let its
associated time points for scheduling constraint checking be
a set: TP = {ti1 , ti2 , . . . , tim}. Then RID(s, P , t) is the union
of all RCC (s, P , tik ) values for all tik from TP , i.e.,

RID(s, P, t) = ∪mk=1RCC(s, P, tik).

Consider the example in Fig. 1. If we use immediate
scheduling, then its TP is {t1, t2, . . . , t8} and corresponding
RID(s, P , t) is:

= ∪8k=1RCC(Sloc, P, tk) = {inc1, inc2, inc3}.
If we use batch-based scheduling, its TP is {t2, t4, t6, t8}

and RID(s, P , t) is:

= ∪4k=1RCC(Sloc, P, t2k) = {inc2}.
From this formulation and calculation, one can under-

stand why batch-based scheduling would miss context in-
consistencies in the detection. Thus, even if it improves the
detection efficiency, batch-based scheduling is undesirable.

Then, to achieve our aforementioned desirable strategy,
i.e., scheduling only twice but detecting all three context
inconsistencies, we formulate its objectives as follows. Given
a sequence of context changes, chg1, chg2, . . . , and chgn,
which are collected at time points t1, t2, . . . , and tn, let its
TP be {ti1 , ti2 , . . . , tim} (1 ≤ i1 < i2 < . . .< im ≤ n).

(1) Quality objective. The scheduling strategy should
not miss any context inconsistency, i.e., itsRID value should
always be equal to that of immediate scheduling. Formally,

∪mk=1RCC−des(s, P, tik) = ∪nk=1RCC−imd(s, P, tk).
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Fig. 2: GEAS overview.

(2) Efficiency objective. The scheduling strategy should
work more efficiently than immediate scheduling, i.e., it
does not have to schedule constraint checking for each
context change. Since it checks context changes by group-
ing, its efficiency improvement can be roughly estimated as
(assuming that each checking takes the same time):

(n−m) / m.

For the example in Fig. 1, the desirable strategy’s effi-
ciency improvement over immediate scheduling is (8 − 2) /
2 = 300%. Our later evaluation would calculate the efficiency
improvement by actual time cost, which is proportional to
this rough estimation.

In the following, we propose our GEAS strategy to
achieve this desirable strategy, and make its efficiency im-
provement as high as possible. By doing so, we address the
efficiency-quality dilemma in context inconsistency detec-
tion.

3 GENERIC ADAPTIVE SCHEDULING

In this section, we elaborate on our GEAS strategy and
explain how to apply it to existing constraint checking
techniques (ECC [8], PCC [6], Con-C [10], and GAIN [11])
for efficient context inconsistency detection.

3.1 Overview
We give the GEAS overview in Fig. 2. It consists of four
steps. In the first step (Section 3.2), GEAS derives suscepti-
bility conditions (s-conditions) from consistency constraints
statically. In the second step (Section 3.3), it matches col-
lected context changes against these derived s-conditions at
runtime. In the third step (Section 3.4), it forms batches with
adaptive sizes according to the matching results. Finally,
in the last step (Section 3.5), it schedules constraint check-
ing for the formed batches and reports detected context
inconsistencies. We would also explain in this step how
to adapt existing constraint checking techniques such that
they can work with GEAS for efficient context inconsistency
detection.

We use the preceding example in Fig. 1 to illustrate this
process. For consistency constraint Sloc, GEAS derives 16
s-conditions. Then, during the context inconsistency detec-
tion, the first three context changes do not match any s-
condition with each other, and so they form a batch (chg1,
chg2, and chg3). When the fourth change comes, it matches
an s-condition with chg1) (enter-leave interference, to be

explained later), and so it is put into the next batch. Sim-
ilarly, the next three changes (chg5, chg6, and chg7) do not
match any s-condition with chg4 and each other, and so they
are put into the same batch as chg4. The last change, chg8,
matches an s-condition with chg5 (enter-leave interference),
and so it goes to the next new batch. Since the third batch is
not closed yet, GEAS schedules constraint checking twice
for the first two batches, respectively, at chg3 and chg7.
It thus obtains two results, {inc1} and {inc2, inc3}. After
merging them, the final detection result RID is {inc1, inc2,
inc3}, which is the desirable one.

We owe this ability of forming adaptive batches and iso-
lating change interferences to GEAS’s derived s-conditions.
In the following, we explain how to systematically derive
s-conditions from given consistency constraints.

3.2 Step 1: Deriving Susceptibility Conditions from
Consistency Constraints

GEAS uses s-conditions to model the interferences among
context changes that can cause context inconsistencies un-
detectable. To derive s-conditions, we need to analyze the
impact that can be caused by a certain context change on a
consistency constraint. We first introduce two impact types,
inc+ impact and inc− impact. If any new context change
can cause a consistency constraint to change its original
truth value from True to False, the change can potentially
cause new context inconsistencies. In this case, the impact
caused by this context change belongs to inc+ impact. On
the contrary, if any context change can cause the constraint
to change its truth value from False to True, the change
can potentially cause existing context inconsistencies unde-
tectable. Similarly, the impact caused by this context change
belongs to inc− impact. Note that a context change can cause
both inc+ and inc− impacts.

According to what impact type(s) a context change can
cause, we classify context changes into three types:

Definition 1 (inc+ change). If a context change can cause inc+
impact only, it is classified as an inc+ change, indicating that this
change can potentially cause new inconsistencies.

Definition 2 (inc− change). If a context change can cause
inc− impact only, it is classified as an inc− change, indicating
that this change can potentially cause existing inconsistencies
undetectable.

Definition 3 (inc? change). If a context change can cause
both inc+ and inc− impacts, it is classified as an inc? change,
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TABLE 1: Deduction rules for Setinc+(s), Setinc−(s), and Setinc?(s).

Formula type
Deduction rules

Setinc+(f) Setinc−(f) Setinc?(f)

f = ∀v ∈ C (f1) Setinc+(f1) ∪ {<+, C>} Setinc−(f1) ∪ {<−, C>} Setinc?(f1) ∪ {<#, C>}
f = ∃v ∈ C (f1) Setinc+(f1) ∪ {<−, C>} Setinc−(f1) ∪ {<+, C>} Setinc?(f1) ∪ {<#, C>}
f = (f1) and (f2) Setinc+(f1) ∪ Setinc+(f2) Setinc−(f1) ∪ Setinc−(f2) Setinc?(f1) ∪ Setinc?(f2)

f = (f1) or (f2) Setinc+(f1) ∪ Setinc+(f2) Setinc−(f1) ∪ Setinc−(f2) Setinc?(f1) ∪ Setinc?(f2)

f = (f1) implies (f2) Setinc−(f1) ∪ Setinc+(f2) Setinc+(f1) ∪ Setinc−(f2) Setinc?(f1) ∪ Setinc?(f2)

f = not (f1) Setinc−(f1) Setinc+(f1) Setinc?(f1)

f = bfunc(v1, v2, ...) ∅ ∅ ∅

indicating that this context change can potentially cause new
inconsistencies, existing inconsistencies undetectable, or both.

We give several examples on classifying context changes
into the preceding three types according to their caused im-
pact types. For ease of presentation, we represent a context
change by a simpler form by removing its element infor-
mation. For example, the three preceding context changes
<+, CX, r1>, <−, Cy, r1>, and <#, Cz, r1, r′1> are now
represented as <+, CX>, <−, Cy>, and <#, Cz>. Consider
a consistency constraint s with a universal formula like
∀v ∈ C (bfunc(v)) and three context changes <+, C>,
<−, C>, <#, C>. For this constraint, <+, C> is an inc+
change because adding an element intoC can possibly cause
constraint s to change its truth value from True to False, and
meanwhile it can never cause s to change its truth value
from False to True. Similarly, <−, C> is an inc− change
because deleting an existing element from C can possibly
cause constraint s to change its truth value from False to
True, and meanwhile it can never cause s to change its truth
value from True to False. <#, C> is an inc? change because
updating an element in C can change the element’s value
arbitrarily, and thus it might cause unpredictable impact.

As mentioned earlier, we derive s-conditions from con-
sistency constraints, so that one can match context changes
against these conditions to form batches for scheduling
(Fig. 2). The derivation of s-conditions can be done statically,
as long as the constraints are available. The basic idea
is to: (1) first examine all possible context changes for a
consistency constraint, and classify them into three types,
namely, inc+, inc−, and inc? changes, and (2) then compose
s-conditions for the constraint from these classified inc+,
inc−, and inc? changes.

Step 1.1: Classifying impact types. We classify all possi-
ble context changes for a consistency constraint s into three
sets, namely, Setinc+(s), Setinc−(s), and Setinc?(s), which
contain inc+, inc−, and inc? changes, respectively. We recur-
sively deduct the three sets according to the formula types
used in a constraint. Table 1 gives all deduction rules. For
example, consider formula f = ∀v ∈ C (f1). The elements
in formula f ’s inc+ change set Setinc+(f) come from its
subformula f1’s inc+ change set Setinc+(f1), plus its newly
introduced <+, C>, as explained earlier.

We apply the deduction rules in Table 1 to the preceding
consistency constraint Sloc, and deduct its three change sets,

Setinc+(Sloc), Setinc−(Sloc), and Setinc?(Sloc), as follows:

Setinc+(Sloc)

= Setinc+(∀vx ∈ Cx (not (∃vy ∈ Cy (same(vx, vy)))))

= Setinc+(not (∃vy ∈ Cy (same(vx, vy)))) ∪ {< +, Cx >}
= Setinc−(∃vy ∈ Cy (same(vx, vy))) ∪ {< +, Cx >}
= Setinc−(same(vx, vy)) ∪ {< +, Cy >} ∪ {< +, Cx >}
= {< +, Cx >,< +, Cy >}.

Similarly, Setinc−(Sloc) and Setinc?(Sloc) are:

Setinc−(Sloc) = {< −, Cx >,< −, Cy >},
Setinc#(Sloc) = {< #, Cx >,< #, Cy >}.

In the following, we explain how we obtain the deduc-
tion rules in Table 1 by a theorem and its proof.

Theorem 1 (Completeness and soundness of the deduc-
tion rules). Given a consistency constraint s, the deduction
rules in Table 1 generate three complete and sound change sets,
Setinc+(s), Setinc−(s), and Setinc?(s), which include all and
correct inc+, inc−, and inc? changes for this constraint, respec-
tively.

Proof. We use induction to prove the completeness and
soundness of the deduction rules. Note that the complete-
ness and soundness here are with respect to generating
the elements in the three context change sets, i.e., all and
correct inc+, inc−, and inc? changes can be generated for
the three sets, respectively, by the deduction rules. Consider
a consistency constraint s. Let its height be h (i.e., maximal
number of recursion depth in any part of this constraint,
e.g., ∀v ∈ C (f) has a height of one).

(1) Base case. When h = 1, constraint s must take the
form of ∀v ∈ C (bfunc(v)) or ∃v ∈ C (bfunc(v)). Due to
similarity in the proof, we consider only the former.

For constraint s, its all possible context changes relate
to its universal formula part only, which are <+, C>, <−,
C>, and <#, C>. We examine them in turn: (1) <+, C>
can cause s’s truth value to change only in three ways: True
→ False, False → False, and True → True, but never False
to True, and thus it belongs to Setinc+(s); (2) similarly, <−,
C> belongs to Setinc−(s); (3) <#, C> can cause s’s truth
value to change in all four ways, and thus it belongs to
Setinc?(s).
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Our deduction rules in Table 1 exactly give this result
since constraint s’s bfunc part does not relate to any context
change for constraint s:

Setinc+(s) = Setinc+(∀v ∈ C (bfunc(v)))

= Setinc+(bfunc(v)) ∪ {< +, C >}
= ∅ ∪ {< +, C >}
= {< +, C >}.

Similarly, Setinc−(s) = {<−, C>} and Setinc?(s) =
{<#, C>}.

Therefore, when h = 1, the completeness and soundness
hold for the deduction rules.

(2) Induction step. Still let constraint s’s height be h.
Suppose that when 1 ≤ h ≤ k, the three change sets by
the deduction rules for s are complete and sound. We now
consider h = k + 1. In this case, constraint s can only take
one of the six forms: ∀v ∈ C (f1), ∃v ∈ C (f1), (f1) and (f2),
(f1) or (f2), (f1) implies (f2), and not (f1), since bfunc does
not incur any recursion. Due to similarity in the proof, we
consider only ∀v ∈ C (f1), (f1) and (f2), and not (f1).

Case s = ∀v ∈ C (f1). Let subformula f1’s height be
hf1 , which must be k. Due to the induction assumption, f1’s
three sets, Setinc+(s), Setinc−(s), and Setinc?(s), include all
and correct inc+, inc−, and inc? changes for f1, respectively.
Due to similarity in the proof, we prove the completeness
and soundness for Setinc+(s) only. The set should contain
changes from subformula f1 and the universal formula
itself. For the latter, it is trivial as only {<+, C>} from
its three changes can cause inc+ impact but never inc−
impact, and thus goes to Setinc+(s), as explained in the
basic step. For the former, according to the semantics of the
universal operator, any change that can cause inc+ impact
but never inc− impact to f1 also does so to s, and thus
goes to Setinc+(s) as well. Meanwhile, any other change
that can cause inc− impact to f1 also does so to s, and
thus should not go to Setinc+(s). Combining the two parts
together, we obtain the deduction rule Setinc+(f1) ∪ {<+,
C>} for Setinc+(s).

Case s = (f1) and (f2). Let subformula f1’s height be
hf1 and f2’s height be hf2 . According to the definition of
height, at least one of hf1 and hf2 is k. Without the loss of
generality, we assume hf1 = k and hf2 = k − 1. Due to
the induction assumption, f1’s and f2’s change sets include
all and correct inc+, inc−, and inc? changes for f1 and f2,
respectively. Due to similarity in the proof, we prove the
completeness and soundness for Setinc+(s) only. The set
should contain changes from subformulas f1 and f2. For the
former, according to the semantics of the and operator, any
change that can cause inc+ impact but never inc− impact to
f1 also does so to s, and thus goes to Setinc+(s). Meanwhile,
any other change that can cause inc− impact to f1 also does
so to s, and thus should not go to Setinc+(s). For the latter,
it can be proved similarly that for f2, only changes from
Setinc+(f2) should go to Setinc+(s). Combining the two
parts together, we obtain the deduction rule Setinc+(f1) ∪
Setinc+(f2) for Setinc+(s).

Case s = not (f1). Let subformula f1’s height be hf1 ,
which must be k. Due to the induction assumption, f1’s
three sets, Setinc+(s), Setinc−(s), and Setinc?(s), include all
and correct inc+, inc−, and inc? changes for f1, respectively.

Due to similarity in the proof, we prove the completeness
and soundness for Setinc+(s) only. The set should contain
changes only from subformula f1 since the not operator
itself does not introduce any context change. For subformula
f1, according to the semantics of the not operator, any
change that can cause inc− impact but never inc+ impact
to f1 can cause inc+ impact but never inc− impact to s,
and thus goes to Setinc+(s) as well. Meanwhile, any other
change that can cause inc+ impact to f1 can possibly cause
inc− impact to s, and thus should not go to Setinc+(s).
Combining the two parts together, we obtain the deduction
rule Setinc−(f1) for Setinc+(s).

Therefore, when h= k + 1, the completeness and sound-
ness also hold for the deduction rules.

As a summary, combining the basic and induction steps,
the deduction rules in Table 1 always generate three com-
plete and sound change sets, Setinc+(s), Setinc−(s), and
Setinc?(s), which include all and correct inc+, inc−, and
inc? changes for any given consistency constraint s.

Note that the proof of Theorem 1 also explains how we
obtain the deduction rules. With these rules, one can deduct
three change sets, Setinc+(s), Setinc−(s), and Setinc?(s),
for any consistency constraint s. Based on the three change
sets, one can further compose s-conditions for constraint s.

Step 1.2: Composing s-conditions. As mentioned earlier,
s-conditions model the latent interferences among context
changes, so that one can use them to prevent context
inconsistencies from being undetectable. The interferences
actually describe a pair of opposite impacts, one incurring in-
consistency while another causing it undetectable. Thus the
first one concerns inc+ impact, which comes from Setinc+
or Setinc? change set, and the second one concerns inc−
impact, which comes from Setinc− or Setinc? change set.
Therefore, we define s-condition as follows:

Definition 4 (Susceptibility condition or s-condition).
Given a consistency constraint s, its s-conditions are formed by
such pairs, the first part of which comes from its Setinc+(s)
or Setinc?(s) change set, and the second part comes from its
Setinc−(s) or Setinc?(s) change set.

According to the definition, an s-condition can take only
one of four forms, namely, (inc+, inc−), (inc+, inc?), (inc?,
inc−), and (inc?, inc?). For example, consider the preceding
consistency constraint Sloc. According to its deducted three
change sets, Setinc+(Sloc), Setinc−(Sloc), and Setinc?(Sloc),
in Step 1.1, one can compose its 16 s-conditions as follows
(four forms, with four each form; “/” represents two possi-
bilities for compactness):

(inc+, inc−) form: (< +, Cx/Cy >,< −, Cx/Cy >),

(inc+, inc?) form: (< +, Cx/Cy >,< #, Cx/Cy >),

(inc?, inc−) form: (< #, Cx/Cy >,< −, Cx/Cy >),

(inc?, inc?) form: (< #, Cx/Cy >,< #, Cx/Cy >).

Let us dig a little bit more about why s-conditions
can help prevent context inconsistencies from being unde-
tectable. Let the context pool at time point t0 be P0, and its
corresponding constraint checking result be RCC(s, P, t0).
Let the next two time points be ta and tb. Then their corre-
sponding context changes are chga and chgb, and updated
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context pools are Pa and Pb, respectively. Suppose that
one considers constraint s for governing the consistency of
contexts in the pool, and the two changes, Pa and Pb, as
a pair happen to match one of s’s s-conditions (we explain
the matching process later in Section 3.3). According to the
definition of s-condition, this matching indicates that chga
can cause new context inconsistency and chgb can cause
existing inconsistency undetectable. That is, we can have
the following two inequations:

RCC(s, P, ta)−RCC(s, P, t0) 6= ∅,
RCC(s, P, ta)−RCC(s, P, tb) 6= ∅.

Let the left side be R1 and R2 for the two inequations,
respectively. We note that R1 and R2 results may overlap
(e.g., when RCC(s, P, t0) = {inc1}, RCC(s, P, ta) = {inc1,
inc2}, and RCC(s, P, tb) = ∅). When this is the case, check-
ing the two changes, chga and chgb, together would cause
the new inconsistency (inc2) due to chga to be missed (since
RCC(s, P, ta) = {inc1, inc2} is no longer available). On the
other hand, if one uses s-conditions to decide to check the
two changes in different batches, the new inconsistency due
to chga would be individually counted into the final result,
i.e., not missed. Therefore, s-conditions help prevent context
inconsistencies from being undetectable. We note that this is
achieved in a conservative way, i.e., s-conditions try to avoid
every possibility that can cause any missed inconsistency.

As a summary, in this step GEAS analyzes and derives
s-conditions from consistency constraints. The s-conditions
are used for matching context changes at runtime. We have
explained simple cases of matching a pair of consecutive
context changes against a constraint’s s-conditions. In the
following, we discuss general cases on how to match a
sequence of context changes.

3.3 Step 2: Matching Context Changes against Suscep-
tibility Conditions
When matching a sequence of context changes against a con-
sistency constraint’s s-conditions, GEAS needs to examine
every possible pair formed by these changes. For the effi-
ciency concern, GEAS examines the pairs in an incremental
way.

We use the example in Fig. 1 to explain how GEAS incre-
mentally examines context change pairs. This is supported
by the notion of batch. The first three context changes, chg1,
chg2, and chg3, are all addition changes. According to our
derived 16 s-conditions for constraint Sloc, they match no
s-condition, and thus they form the initial batch. Suppose
now one collects the fourth context change chg4, which is
a deletion change. Instead of examining all possible pairs
formed among chg1, chg2, chg3, and chg4 (i.e., 6 chronolog-
ical permutations), GEAS only examines three pairs, (chg1,
chg4), (chg2, chg4), and (chg3, chg4), in turn. GEAS finds
that the first pair already matches an s-condition (<+, Cx>,
<−, Cx>). So GEAS stops examining the following two
pairs, as this result is enough for GEAS to decide to form
a new batch for chg4 (we explain the batch-forming process
later in Section 3.4).

We present this matching algorithm in Algorithm 1. For
consistency constraint s, consider a new context change
chgnew. The change is attached to each existing change in

Algorithm 1: (s-condition-matching) Matching context
changes against s-conditions

Input: consistency constraint s, new context change
chgnew

Output: matching result rs
1 rs← False
2 for chgi ∈ s.batch chronologically do
3 if chgi is an inc+ or inc? change then
4 if (chgi, chgnew) ∈ s.s-conditions then
5 rs← True
6 break

7 return rs

Algorithm 2: (batch-forming) Forming batches by ad-
aptive grouping

Input: set of consistency constraints S , new context
change chgnew

Output: set of consistency constraints S (updated)
1 for each s ∈ S do
2 if s-condition-matching(s, chgnew) then
3 s.newBatch← <chgnew>

4 else
5 s.batch← append(s.batch, chgnew)

6 return S

constraint s’s batch in turn (Line 2) to examine whether
such formed pair matches any s’s s-condition (Line 4). If any
matching is found, the examination terminates immediately
for efficiency. Finally, the algorithm returns the matching
result for chgnew with respect to constraint s.

As a summary, in this step GEAS examines each pair
formed by context changes against a consistency constraint’s
s-conditions to decide whether to form a new batch for this
constraint. We explain the batch-forming process next.

3.4 Step 3: Forming Batches by Adaptive Grouping

Based on the matching results from the last step, GEAS
forms batches by adaptive grouping of isolated context
changes. By “adaptive”, the size of each formed batch
is no longer fixed, as contrast to traditional batch-based
scheduling. Besides, GEAS aims to maximize the size of
each formed batch for the efficiency concern. We present the
batch-forming algorithm in Algorithm 2. Note that GEAS
forms an individual batch for each consistency constraint
and thus Algorithm 2 maintains multiple batches in parallel.

For each consistency constraint s, Algorithm 2 decides
whether to initiate a new batch for the new context change
chgnew. If the s-condition-matching function (i.e., Algo-
rithm 1) returns True for chgnew with respect to constraint
s (Line 2), the change is used to initiate a new batch
s.newBatch (Line 3), meaning that chgnew should not be
checked with earlier collected changes. Otherwise, the func-
tion returns False, and chgnew is appended to s’s current
batch s.batch (Line 5), meaning that this change can be
safely checked together with earlier changes.
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Algorithm 2 splits a sequence of context changes into
isolated batches for each consistency constraint. We now
show that such formed batches will not miss any context
inconsistency, i.e., GEAS fulfills our preceding formulated
quality objective (in Section 2.4). To show it, we have the
following equivalence theorem:

Theorem 2 (Equivalence of inconsistency detection result).
Given any consistency constraint and context pool, GEAS always
returns the same inconsistency detection result as immediate
scheduling does for any sequence of context changes.

Proof. Given a sequence of context changes, GEAS splits
it into multiple batches and checks each batch in turn. On
the other hand, immediate scheduling checks each change
in turn. The theorem essentially claims that GEAS always
returns the same inconsistency detection result for each
batch as those accumulated by immediate scheduling via
checking each change in the batch. As the batches can be
multiple, we transform the problem into an equivalent one:
GEAS returns the same inconsistency detection result (i.e.,
RID value) as immediate scheduling does for one batch of
context changes, as long as their initial RID values are equal
before checking this batch.

Let the consistency constraint be s, context pool be P ,
and initial time point be t0. Then the claim of immediate
scheduling’s and GEAS’s initial RID values being equal can
be represented as follows:

RID−imd(s, P, t0) = RID−geas(s, P, t0).

Assuming this claim holding for now, we proceed with
our proof and will come back to this claim later.

Then we consider a batch of context changes formed by
GEAS, chg1, chg2, . . . , chgm, which are collected at time
points t1, t2, . . . , tm, respectively. We now prove that GEAS
will return the same RID value as immediate scheduling
does after checking these changes, i.e.,

RID−imd(s, P, tm) = RID−geas(s, P, tm).

Since constraint s and pool P do not change in our proof,
for ease of presentation, we omit their presence in the RID

and later RCC representations. That is, the preceding two
equations can be simplified as:

RID−imd(t0) = RID−geas(t0), (1)
RID−imd(tm) = RID−geas(tm). (2)

Note that the theorem also implies that the constraint
checking used in immediate scheduling and GEAS should
be the same or equivalent (i.e., equal RCC values). We note
that this is true, although we will explain more details later
in Section 3.5. With the implication holding, we have the
following equation (since RCC−imd and RCC−geas values
are always equal to each other, we refer to them by RCC

directly later):

RCC−imd(ti) = RCC−geas(ti).

To check the batch of context changes, chg1, chg2, . . . ,
chgm, if one uses immediate scheduling, its RID value
would be:

RID−imd(tm) = (∪mk=1RCC(tk)) ∪RID−imd(t0). (3)

On the other hand, if one uses GEAS, its RID value
would be:

RID−geas(tm) = RCC(tm) ∪RID−geas(t0). (4)

The key difference between the preceding two equations
lies in ∪mk=1RCC(s, P , tk) and RCC(s, P , tk). So we study
their relations as below. We first claim the following relation
holding (1 ≤ a ≤ b < m):

RCC(ta) ∪RCC(tb) ⊆ RCC(ta−1) ∪RCC(tb+1). (5)

To see it, if this relation does not hold, there must
exist one context inconsistency, e.g., incx, which belongs
to RCC(ta) ∪ RCC(tb) but does not belong to RCC(ta−1)
∪ RCC(tb+1). This indicates that incx is caused by some
change in the batch between chga and chgb (inclusive),
and becomes undetectable by another change no later than
chgb+1. Let the change causing incx be chgx and the one
causing incx undetectable be chgy . Then we have a ≤ x <
y ≤ b + 1, and chgx must be an inc+ or inc? change and
chgy be an inc− or inc? change. According to the definition
of s-condition, the pair of chgx and chgy becomes one of s’s
s-conditions. As a result, the two changes, chgx and chgy
, must be isolated into two batches. Since this violates the
fact (chgx and chgy are in the same batch), relation (5) must
hold.

We use relation (5) recursively to construct the following
new relation by replacing a and b with i and m − i, then
i− 1 and m− i+ 1, . . . , until 1 and m− 1 (1 ≤ i ≤ bm/2c):

RCC(ti) ∪RCC(tm−i)

⊆ (RCC(ti−1) ∪RCC(tm−i+1))

⊆ (RCC(ti−2) ∪RCC(tm−i+2))

. . .

⊆ (RCC(t0) ∪RCC(tm)). (6)

We now use relation (6) to study earlier discussed key
difference, ∪mk=1RCC(s, P , tk) and RCC(s, P , tk). It de-
pends on whether m is odd or even.

Case (m is odd). Then the valid range for i is from 1 to
(m−1)/2 (inclusive) for relation (6). By applying the relation
(m − 1)/2 times, we obtain the following relation (pairing
RCC(t1) and RCC(tm−1), then RCC(t2) and RCC(tm−2),
. . ., until RCC(t(m−1)/2) and RCC(t(m+1)/2):

∪mk=1 RCC(tk)

= RCC(t1) ∪ . . . ∪RCC(tm−1) ∪RCC(tm)

⊆ RCC(t0) ∪ . . . ∪RCC(tm) ∪RCC(tm)

. . .

⊆ RCC(t0) ∪RCC(tm).

Case (m is even). The valid range for i is from 1 to
m/2 (inclusive). The only difference from the preceding case
is RCC(tm/2), which is left without pairing. We solve the
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problem by cloning RCC(tm/2) once, so that relation (6) can
be applied similarly:

∪mk=1 RCC(tk)

= (∪m/2−1
k=1 RCC(tk)) ∪ (∪mk=m/2+1RCC(tk))

∪RCC(tm/2) ∪RCC(tm/2)

. . .

⊆ RCC(t0) ∪RCC(tm) ∪RCC(t0) ∪RCC(tm)

= RCC(t0) ∪RCC(tm).

Combining two cases, for any m, the following relation
holds:

∪mk=1 RCC(tk) ⊆ RCC(tm) ∪RCC(t0).

We add equation (1) to the above relation by the set
union operation, and obtain the following new relation:

(∪mk=1RCC(tk)) ∪RID−imd(t0)

⊆ RCC(tm) ∪RCC(t0) ∪RID−geas(t0).

We further simplify it by the fact that RCC(t0) ⊆
RID−geas(t0), since the latter is the accumulation result
including the former, as we defined earlier in Section 2.5:

(∪mk=1RCC(tk)) ∪RID−imd(t0)

⊆ RCC(tm) ∪RID−geas(t0). (7)

On the other hand, it is easy to observe that
∪mk=1RCC(tk) includes RCC(tm) naturally. Then the follow-
ing relation trivially holds:

(∪mk=1RCC(tk)) ∪RID−imd(t0)

⊇ RCC(tm) ∪RID−geas(t0). (8)

By combining relations (7) and (8), we eventually obtain
the following equation:

(∪mk=1RCC(tk)) ∪RID(t0)

= RCC(tm) ∪RID(t0). (9)

In equation (9), the left side is RID−imd(s, P, tm) and the
right side isRID−geas(s, P, tm) (recall equations (3) and (4)).
Therefore,

RID−imd(tm) = RID−geas(tm).

Thus, given any batch of context changes formed by
GEAS, it always returns the same RID value as immediate
scheduling does, if their initial RID values before checking
this batch are equal (referred to as the intermediate proof ).
Now come back to our earlier claim that GEAS and the
immediate scheduling have their initial RID values equal.
We say that this claim always holds, because: (1) if the
“initial” refers to the very beginning when no batch has
ever been checked, then both initial RID values are trivially
equal to ∅; (2) otherwise, the “initial” refers to a time point
where several earlier batches have been checked, and with
the preceding point (1) and the intermediate proof, one can
easily obtain the “equal initial RID value” result.

Combining these pieces and back to our theorem, for
any sequence of context changes, which can form one or
multiple batches, GEAS always returns the same inconsis-
tency detection result as immediate scheduling does. This
completes the proof.

Algorithm 3: (scheduling) Scheduling constraint check-
ing

Input: set of consistency constraints S , context
changes in a stream chgStream

Output: inconsistency detection result RID

1 while isNotEmpty(chgStream) do
2 // form batches and check changes
3 chgnew ← getNext(chgStream)
4 batch-forming(S , chgnew)
5 for each s ∈ S do
6 if s.newBatch 6= null then
7 RID ← checking(s, s.batch) ∪ RID

8 s.batch← s.newBatch
9 s.newBatch← null

10 for each s ∈ S do
11 // clean up
12 if s.batch 6= null then
13 RID ← checking(s, s.batch) ∪ RID

14 s.batch← null

15 return RID

As a summary, in this step GEAS forms batches by
adaptive grouping of collected context changes. We also
prove that such formed batches will not miss any context in-
consistency, justifying its quality objective. In the following,
we explain how to schedule constraint checking for these
formed batches.

3.5 Step 4: Scheduling Constraint Checking
Given a formed batch of context changes, GEAS schedules
constraint checking for all changes in this batch. Then
constraint checking techniques (e.g., ECC [8], PCC [6], Con-
C [10], and GAIN [11]) should support checking multiple
context changes as a whole. Note that not all existing
constraint checking techniques support this naturally. In this
step, we explain how to adapt these techniques, if necessary,
for this purpose.

Algorithm. We first present the whole constraint check-
ing scheduling process in Algorithm 3, in which the check-
ing function can refer to any existing constraint check-
ing technique (we will discuss it later). In the algorithm,
GEAS examines each context change collected in the stream
chgStream (Line 3), and decides whether it initializes a
new batch or is put into the existing batch for each consis-
tency constraint by function batch-forming, i.e., Algorithm 2
(Line 4). Then, if any constraint has a new batch initialized
(Line 6), which indicates that its existing batch is ready
for checking, GEAS schedules a specific constraint checking
technique to check all changes in the existing batch for this
constraint and adds its detected context inconsistencies into
the final result RID (Line 7). Finally, when the stream has
no more context change left, GEAS cleans up the remaining
changes in the existing batch for each constraint (Lines 12–
14), and returns the final result (Line 15).

Now we focus on the checking function in the algorithm,
which can refer to any constraint checking technique but
requires it able to check multiple changes in a batch as
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a whole for one consistency constraint. We examine exist-
ing constraint checking techniques (i.e., ECC [8], PCC [6],
Con-C [10], and GAIN [11]) and partition them into two
categories: non-cache-based and cache-based. A technique is
non-cache-based if it does not cache any previous checking
result, and cache-based if it has to cache previous results
for speeding up the calculation of new checking results.
ECC [8], Con-C [10], and GAIN [11] belong to the former,
and PCC [6] belongs to the latter. For non-cache-based
techniques, GEAS can apply to them almost directly, as there
is no essential difference for these techniques to apply one
or multiple changes to the context pool before checking the
concerned contexts. For cache-based techniques, they may
need some adjustment, when they work incrementally and
the incremental granularity is based on a single change.

PCC adaptation. We now explain how to adapt PCC [6]
to work with GEAS. PCC’s incremental granularity is based
on a single change, and we extend it to support checking
multiple context changes as a whole. We name the extended
PCC PCCm. PCCm needs to account for two key tasks,
namely, truth value evaluation and link generation. The former
evaluates the truth value of a consistency constraint with
respect to the contexts in a pool, and the latter generates
links to explain how a constraint has been satisfied or
violated (Section 2.2). To enable PCCm to support the two
tasks with respect to multiple context changes as a whole,
we slightly modify PCCm’s truth value evaluation and link
generation semantics over those of PCC.

A constraint checking technique’s truth value evalua-
tion and link generation semantics formally specify how
the truth value evaluation and link generation should be
conducted for detecting context inconsistencies. We give
one example (universal formula) in Fig. 3 for PCC. T is
the truth value evaluation function that takes a formula
(e.g., “∀v ∈ C(f)”) and a variable assignment (e.g., α) as
input, and returns the truth value of this formula under
this particular variable assignment. Similarly, L is the link
generation function that takes the same input but returns a
set of links to explain the truth value from the T function.
PCC checks a context change for a universal formula by four
cases, namely, fully reusable (the change does not affect C
and subformula f at all), checking a single addition change
(affecting C), checking a single deletion change (affecting
C), and checking a change that affects subformula f instead.
These four cases incur different levels of reusability of
previous checking results. Here, C represents the current
C value and C0 represents the last C value. Similarly,
T /L represents the new truth value/generated links and
T0/L0 represents the last truth value/generated links. For
a detailed explanation and its examples, interested readers
can refer to PCC’s original publication [6].

We give the corresponding new truth value evaluation
and link generation semantics in Fig. 4 for PCCm. PCCm
checks multiple context changes as a whole. Similarly, it
also partitions the checking into four cases. The first (fully
reusable, i.e., no affection at all) and last (affecting subfor-
mula only) cases are exactly the same as before, but the
second and third cases now need to take care of more
situations. When multiple context changes are checked as
a whole, the situation can be checking addition changes
only, deletion changes only, or both addition and deletion

changes. In PCCm, the second case is for the first situation
(i.e., checking addition changes only), and the third case
is for the second and third situations (i.e., checking deletion
changes only, or both addition and deletion changes), which
are merged for simplifying the semantics (i.e., as the case
where there is at least one deletion change).

Similarly, the semantics for an existential formula can
also thus be modified to support checking multiple context
changes as a whole, but those for other formulas keep the
same as in PCC, since those formulas will not be directly
affected by any context change. As a whole, one can easily
observe that such modifications are essentially immaterial
to the truth value evaluation and link generation semantics
of PCC and PCCm. Therefore, PCCm will return the same
checking results as PCC.

Efficiency analysis. Regarding the efficiency, PCCm will
take almost the same time to check all involved context
changes as PCC (in this case PCC will be scheduled mul-
tiple times), since each change still needs to be checked.
Nevertheless, PCCm can still win over PCC as accumulating
the checking results for multiple changes can now be done
in one run instead of multiple runs. Regarding ECC, Con-
C, and GAIN, now they work much faster when combined
with GEAS. This is because they can spend the same amount
of time on checking multiple context changes instead of
one change, since they work in a non-cache-based way.
Thus their efficiency improvement relates to the reduced
scheduling of constraint checking, which is close to (n −
m) / m, where n is the number of changes and m is the
average number of scheduled constraint checking. Note that
this is the rough estimation of the efficiency improvement
(assuming that each checking takes the same time). This
efficiency analysis will be validated by our later evaluation.

As a summary, in this step GEAS copes with existing
constraint checking techniques for efficient context incon-
sistency detection with quality guarantee. In the following,
we consider optimizing GEAS by identifying and remov-
ing impact-opposite context changes in GEAS-maintained
batches.

4 GEAS OPTIMIZATION

In this section, we optimize GEAS for further efficiency
improvement by a dedicated change-cancellation technique.
The optimization applies to scenarios where there are only
context addition and deletion changes. We note that such
scenarios are quite common, and in fact update changes can
also be decomposed into deletion and addition changes.

4.1 Optimization Overview
GEAS realizes efficient context inconsistency detection
by forming adaptive batches that never contain context
changes of latent interference with each other. In this section,
we optimize GEAS by identifying and removing change
pairs from the batches as long as they contain opposite
impacts in constraint checking. In this case, we say that
they form an inter-cancellation relationship and we model
such relationship as a cancellation condition (c-condition). By
c-conditions, one can greatly reduce the number of context
changes that have to be checked, thus further improving the
efficiency of context inconsistency detection.
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T [∀v ∈ C(f)]α =

1) T0[∀v ∈ C(f)]α,
if C has no change (i.e., C = C0) and affected(f ) = ⊥;

2) T0[∀v ∈ C(f)]α ∧ T [f ]bind((v,x),α) | {x} ∈ C − C0,

if C has an addition changes;
3) > ∧ T0[f ]bind((v,x1),α)

∧ . . . ∧ T0[f ]bind((v,xn),α) | xi ∈ C,

if C has a deletion change;
4) > ∧ T [f ]bind((v,x1),α)

∧ . . . ∧ T [f ]bind((v,xn),α) | xi ∈ C,

if affected(f ) = >.

L[∀v ∈ C(f)]α =

1) L0[∀v ∈ C(f)]α,
if C has no change (i.e., C = C0) and affected(f ) = ⊥;

2) L0[∀v ∈ C(f)]α ∪ {l|l ∈ {(violated, {(v, x)})} ⊗ L[f ]bind((v,x),α) } | {x} = C − C0 ∧ T [f ]bind((v,xi),α)
= ⊥,

if C has an addition changes;
3) {l|l ∈ {(violated, {(v, xi)})} ⊗ L0[f ]bind((v,xi),α)

} | xi ∈ C ∧ T [f ]bind((v,xi),α)
= ⊥,

if C has a deletion change;
4) {l|l ∈ {(violated, {(v, xi)})} ⊗ L[f ]bind((v,xi),α)

} | xi ∈ C ∧ T [f ]bind((v,xi),α)
= ⊥,

if affected(f ) = >.

Fig. 3: Truth value evaluation and link generation semantics for a universal formula in PCC

T [∀v ∈ C(f)]α =

1) T0[∀v ∈ C(f)]α,
if C has no change (i.e., C = C0) and affected(f ) = ⊥;

2) T0[∀v ∈ C(f)]α ∧ T [f ]bind((v,x1),α)
∧ . . . ∧ T [f ]bind((v,xn),α)} | xi ∈ C − C0,

if C has addition changes only;
3) > ∧ T0[f ]bind((v,x1),α)

∧ . . . ∧ T0[f ]bind((v,xm),α) ∧ T [f ]bind((v,y1),α)
∧ . . . ∧ T [f ]bind((v,yn),α) | xi ∈ C0 ∩ C,

yi ∈ C − C0,
if C has any deletion change (deletion changes only, or both addition and deletion changes);

4) > ∧ T [f ]bind((v,x1),α)
∧ . . . ∧ T [f ]bind((v,xn),α) | xi ∈ C,

if affected(f ) = >.

L[∀v ∈ C(f)]α =

1) L0[∀v ∈ C(f)]α,
if C has no change (i.e., C = C0) and affected(f ) = ⊥;

2) L0[∀v ∈ C(f)]α ∪ {l|l ∈ {(violated, {(v, xi)})} ⊗ L[f ]bind((v,xi),α)
} | xi ∈ C − C0 ∧ T [f ]bind((v,xi),α)

= ⊥,

if C has addition changes only;
3) {l|l ∈ {(violated, {(v, xi)})} ⊗ L0[f ]bind((v,xi),α)

} ∪ {l|l ∈ {(violated, {(v, yi)})} ⊗ L[f ]bind((v,yi),α)
} | xi ∈ C0 ∩ C ∧

T [f ]bind((v,xi),α)
= ⊥, yi ∈ C − C0 ∧ T [f ]bind((v,yi),α)

= ⊥,

if C has any deletion change (deletion changes only, or both addition changes and deletion changes);
4) {l|l ∈ {(violated, {(v, xi)})} ⊗ L[f ]bind((v,xi),α)

} | xi ∈ C ∧ T [f ]bind((v,xi),α)
= ⊥,

if affected(f ) = >.

Fig. 4: Truth value evaluation and link generation semantics for a universal formula in PCCm (blue parts are newly added or
modified)

We give an overview of our GEAS optimization in Fig. 5.
Note that we replace the original Step 3 in Fig. 2 with
the parts (Steps 3, 5, and 6) in the dashed rectangle in
Fig. 5. Step 5 (Section 4.2) and Step 6 (Section 4.3) are
new. The former infers c-conditions, and the latter examines
context changes against these inferred c-conditions. Then,

Step 3 (Section 4.4) is updated to form and refine batches
by adaptively grouping collected context changes according
to matching results of s-conditions and examining results of
c-conditions. We in the following introduce these steps in
turn.
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Step 1 (§3.2)
Deriving s-conditions 

from consistency 
constraints

Consistency 
constraints

Step 2 (§3.3)
Matching context changes 

against s-conditions

Derived
s-conditions

Updated Step 3 (§4.4)
Forming and refining
batches by adaptive

grouping

Matching results
for s-conditions

Context changes 
in a stream

Step 4 (§3.5 )
Scheduling

constraint checking

Batches with 
adaptive sizes

Detected context 
inconsistencies

Adapted constraint
checking techniques

Step 5 (§4.2)
Inferring c-conditions

for consistency
constraints

Step 6 (§4.3)
Examining context changes 

against c-conditions

Inferred
c-conditions

Examining results
for c-conditions

Fig. 5: GEAS optimization overview.
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Truth value: False
Links: {inc2}, where 
inc2 = (violated, {(𝑣#, r2), (𝑣(, r2)})

Fig. 6: A runtime tree example for constraint Sloc.

4.2 Step 5: Inferring Cancellation Conditions for Con-
sistency Constraints

Original GEAS (later referred to as GEAS-ori) forms batches
of context changes for constraint checking. Changes in such
batches are already safe for checking together, not missing
any context inconsistency. Nevertheless, optimized GEAS
(later referred to as GEAS-opt) further removes change pairs
from the batches if such pairs cause opposite impacts in
constraint checking, thus reducing the changes that have to
be checked. By “opposite impact”, we mean that one change
in a pair can incur some intermediate results (in terms of
partial truth values and links), while the other change in
this pair exactly destroys these intermediate results.

For better understanding, we use the notion of run-
time tree (supported in existing constraint checking tech-
niques [6], [10], [11]) to explain such opposite impact. We
note that constructing and maintaining such tree-alike struc-
tures are all done by these checking techniques internally,
and that GEAS only observes their internal states and
makes minor updates as we explain later. Still, we briefly
explain how a runtime tree is constructed with respect to a
given consistency constraint and elements in its associated
contexts [10]. In a runtime tree, a universal or existen-
tial formula would take multiple branches, whose number

is equal to that of elements in this formula’s associated
context. Each branch is labeled with a particular element
from the concerned context and assigned to this formula’s
associated variable. These branches represent this formula’s
subformula with different variable assignments. An “and”,
“or”, and “implies” formula would take two branches, each
of which corresponds to one of its subformulas. A “not”
formula takes one branch, which corresponds to its only
subformula. Terminal bfunc is always a leaf node because
it does not have any subformula.

Now consider our earlier consistency constraint Sloc:
∀ vx ∈ Cx (not (∃vy ∈ Cy (same(vx, vy)))). Fig. 6 shows its
corresponding runtime tree (one example). The tree shows
how the constraint is checked with respect to the contexts
in a pool. For this example, Cx = {r2, r3} and Cy = {r1, r2},
which corresponds to the scenarios of P8 in Fig. 1. We also
annotate intermediate truth values and links for all nodes in
Fig. 6. Now suppose that the next two context changes are
<−,Cx, r3> and<+,Cx, r4>. One can observe that applying
and checking the first change <−, Cx, r3> would cause
deleting the whole right branch including nodes 3, 5, 8, and
9, while applying and checking the second change <+, Cx,
r4> would add this branch completely back, except variable
assignment vx = r3 being changed to vx = r4, without affect-
ing the final checking results (i.e., False and {inc2}). In this
case, we say that the two changes cause opposite impacts in
constraint checking. If one removes the two changes from
the batch, as if they were not present, the efficiency of
context inconsistency detection can be improved without
any negative consequence. This is our planned change-
cancellation technique for GEAS optimization.

The key to realize change cancellation is to identify those
change pairs in a batch, whose impacts on constraint check-
ing are exactly opposite to each other. The impact covers
both evaluated truth values and generated links. However,
a complete validation on whether two changes have exactly
opposite impacts on constraint checking requires evaluating
truth values and generating links for related nodes on run-
time trees, which would spend valuable time, weakening
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our targeted optimization. Considering that link generation
is much more complex than truth value evaluation [6], [37],
our idea is to: (1) only evaluate and compare truth values for
the nodes affected by given changes, and (2) protect critical
nodes whose truth values relate to the final checking results
(e.g., links) from being affected by given changes.

Step 5.1: Evaluating and comparing truth values. Given
a pair of context changes, this sub-step examines whether
the nodes related to them on runtime trees would obtain
exactly the same truth values. For example, the aforemen-
tioned change pair,<−,Cx, r3> and<+,Cx, r4>, both relate
to the same four nodes (3, 5, 8, and 9) in Fig. 6. One needs
to evaluate truth values for these four nodes and compare
whether their counterparts have equal values. We note that:
(1) one can only evaluate and compare truth values for bfunc
nodes, as they are the only places that can cause different
values; (2) the pair of changes should concern the same
context (e.g., <−, Cx, r3> and <+, Cx, r4> both concern
context Cx), otherwise they cannot be compared. This can
speed up our comparison.

If the pair of context changes fails the comparison, they
are not impact-opposite. Otherwise, they pass the compar-
ison, GEAS-opt would further rely on Step 5.2 to decide
whether the change pair can be canceled. We also note
that this sub-step invokes “adapted constraint checking
techniques” in Step 4, as the dashed arrow shows in Fig. 5.

Step 5.2: Protecting critical nodes. The preceding sub-
step validates only truth values for nodes affected by a
given pair of context changes. We still need to ensure that
links in the final checking results will not be affected by
canceling the pair of changes. Note that since Step 5.1
guarantees that all affected nodes obtain the equal truth
values for the change pair, then it is impossible to encounter
cases where new inconsistencies are detected (e.g., {inca} →
{inca, incb}) or existing inconsistencies are gone (e.g., {inca,
incb} → {inca}) after applying the change pair (otherwise
there must exist one node whose truth value is different for
the change pair). The only remaining case is that detected
inconsistencies might be updated (e.g., {inca} → {incb})
after applying the pair (with all truth values not changed
after applying the change pair). We need to invalidate this
possibility to ensure that links are also not affected by the
change pair.

As mentioned, for efficiency consideration, we do not
generate and compare links. We use a light-weight tech-
nique by the notion of critical node to invalidate this pos-
sibility. We identify and protect those nodes from being
affected by the given change pair, named critical nodes, as
long as their truth values can determine the final checking
results on runtime trees. Consider the earlier example in
Fig. 6, where nodes 1, 2, 4, and 7 are critical nodes (we
will discuss how to decide critical nodes soon later). If a
given change is <−, Cx, r3>, it would cause deleting the
branch of vx = r3, but does not affect the truth value of any
critical node (still False, False, True, and True for nodes 1,
2, 4, and 7, respectively). Then the change will not cause the
aforementioned possibility, and thus can safely be consid-
ered in canceled change pairs. However, if a given change
is <−, Cy, r2>, it would cause deleting two branches of vy
= r2, and will affect the truth values of all the four critical
nodes (now True, True, and False for nodes 1, 2, and 4, with

node 7 gone). Then the change can cause the aforementioned
possibility, and thus should not be considered in canceled
change pairs.

The remaining two issues are: (1) how to decide which
nodes are critical nodes on a runtime tree, and (2) how
to decide whether any critical node will be affected by
a context change. For (1), since the last checking result
(i.e., truth value and links, or RCC ) are available before
checking a batch of context changes, one can easily identify
the paths that generate the links in RCC and consider all
nodes on the paths as critical nodes. For the example in
Fig. 6, inc2 corresponds to the paths as annotated by bold
line segments, from nodes 1, 2, 4, to 7, and all the four
nodes are critical nodes, as mentioned earlier. For (2), since
we aim to invalidate the possibility of {inca} → {incb}, we
choose to prevent those changes that can cause {inca} gone
to be included into canceled change pairs. Then we only
examine whether any critical node will be deleted due to a
change (truth values of other critical nodes will be affected
accordingly). For the example in Fig. 6, change <−, Cy, r2>
will cause node 7 to be deleted, and thus the change will
affect this critical node as well as truth values of its upper-
layer nodes, as mentioned earlier.

Combining the preceding efforts together, we infer c-
conditions for deciding change pairs that can be canceled
in a batch for each consistency constraint. A constraint’s c-
condition consists of three parts, as follows:

Definition 5 (Cancellation condition or c-condition). Given
a consistency constraint, its c-condition consists of the following
three parts: considering a pair of addition-deletion or deletion-
addition context changes, (1) the two changes are consecutive and
appear at the head of the constraint’s batch, (2) truth values are
all equal for any pair of corresponding nodes on the constraint’s
runtime tree related to the two changes, and (3) no critical node
on the runtime tree will be affected by either change.

The (2) and (3) parts correspond to the aforementioned
Step 5.1 and 5.2 examinations, which decide that the change
pair will cause opposite impacts on constraint checking. The
(1) part is the precondition, but can be much more relaxed
(we will discuss it later in 4.3). When a pair of context
changes satisfy all the three parts, we say that they form
an inter-cancellation relationship and can be safely removed
as if they were not present in the batch.

Let us revisit the example in Fig. 6, which concerns
consistency constraint Sloc and its next two context changes
<−, Cx, r3> and <+, Cx, r4>. First, the two changes
naturally satisfy the (1) part in the definition. Second, as
analyzed earlier, replacing r3 in Cx with r4 does not change
the truth value for any node on the right branch, and thus
the (2) part is satisfied. Third, the second change <+, Cx,
r4> does not affect any critical node on the left branch, as
we analyzed for the first change <−, Cx, r3> in Step 5.2,
and thus the (3) part is also satisfied. Therefore, this change
pair satisfies constraint Sloc’s c-condition and is qualified for
removal from Sloc’s batch.

As a summary, in this step GEAS-opt infers c-conditions
for consistency constraints. The c-conditions are used for
examining context changes at runtime. We have explained
restricted cases of examining a pair of heading, consecutive
context changes against a constraint’s c-condition. In the fol-
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lowing, we discuss how to relax the “heading, consecutive”
precondition, so that the optimization can apply to more
context change pairs.

4.3 Step 6: Examining Context Changes against Can-
cellation Conditions

The c-condition optimization aims to refine context changes
in a batch by removing those impact-opposite change pairs.
However, its “heading, consecutive” precondition makes its
applicability very restricted: unless the batch contains only
one change chgx currently, one has no chance to examine its
next change chgy (since only in this case, (chgx, chgy) forms
a heading, consecutive change pair).

To address this restriction, we plan to remove the “head-
ing, consecutive” precondition. This implies that one would
be allowed to remove any pair (chgx, chgy) formed from
all changes in one batch (chg1, chg2, . . . , chgn) and its next
change chgn+1, as long as the pair satisfies the (2) and (3)
parts of a c-condition. This further implies that the two
changes chgx and chgy for removal would be as if they were
heading, consecutive in the batch. Then it would require that
checking the original batch (chg1, chg2, . . . , chgn+1) would
return the same constraint checking result as checking the
new batch, say, (chg2, chgn+1, chg1, chg3, . . . , chgn−1, chgn),
assuming that x = 2, y = n + 1. For this purpose, we have
the following “order equivalence” theorem to guarantee this
moving.

Theorem 3 (Order equivalence). Given a consistency con-
straint s and its current batch of context changes, if any change
pair from the batch satisfies the (2) and (3) parts of s’s c-condition,
then no matter whether one moves the change pair to the head of
the batch or not, checking the whole batch of changes against s
always returns the same constraint checking result.

Proof. As mentioned earlier, checking one batch of context
changes against a consistency constraint takes two steps: (1)
applying all changes in the batch to contexts in the pool, and
(2) checking the updated contexts against the constraint for
any context inconsistency. We in the following prove that
moving the change pair does not affect both steps.

When the (1) step goes smoothly, all contexts in the pool
are updated properly. Then the (2) step is straightforward
for the order equivalence since it does not depend on the
order at all. Its only assumption is that the (1) step’s re-
sulting contexts are the same no matter whether one moves
the change pair or not. We in the following prove that this
assumption holds.

To prove the assumption, we need to show that: (1) the
new batch of context changes resulting from moving the
change pair is still valid with respect to element operations
in the changes to concerned contexts, and (2) the contexts
resulting from the new batch are the same as those resulting
from the original batch. When (1) holds, (2) is trivial since
all changes in the new and original batches are the same and
can be validly applied. We in the following focus on (1).

We first explain the validity of a batch of context changes
with respect to element operations in the changes to con-
cerned contexts. Consider a consistency constraint s and its
current batch of context changes (chg1, chg2, . . . , chgn). We
say that the batch is valid if neither of the following two

cases exists: (1) deleting an element that does not exist from
a context; (2) adding an element that already exists into a
context. We then need to prove that moving the change pair
that satisfies the (2) and (3) parts of constraint s’s c-condition
will not breach the validity of s’s batch, i.e., if s’s original
batch is valid, then the new batch after moving the change
pair is still valid. However, this target is more than necessary
for the order equivalence. In fact, one only needs to prove
that after moving the change pair to the head of the batch,
the preceding two invalidity cases either do not exist or will
not affect the equivalence of contexts resulting from either
the new batch or the original batch. We prove it below.

The two changes in the pair must be a deletion change
and an addition change, respectively. We consider the im-
pact of moving them to the head of the batch in turn.

Moving the deletion change. Let the change be <−,
C, a>. It is easy to observe that moving the deletion
change concerns only the first invalidity case (i.e., deleting
an element that does not exist from a context). This case
contains two possibilities: (a) element a does not exist in
context C at the head of the batch, and (b) after the deletion
change is moved to the head of the batch, there exists
another later deletion change on element a as well, without
any prior change of adding a back to C. For (a), this is
impossible because element a must already exist before
applying this batch of context changes, since otherwise this
deletion change cannot be qualified for cancellation (the (2)
part of the c-condition guarantees it). For (b), this is also
impossible, as since the original batch of context changes
is valid, it must contain a change sequence of <−, C, a>,
<+, C, a>, and <−, C, a> (may not be consecutive; the
second <−, C, a> is the deletion change to move), and this
sequence will certainly cause an impact sequence of inc−,
inc+, and inc−, or inc+, inc−, and inc+, either of which
already violates GEAS’s s-conditions that form this batch.
Therefore, the preceding invalidity cases do not exist if one
moves the deletion change to the head of the batch.

Moving the addition change. Let the change be <+, C,
a>. It is easy to observe that moving the addition change
concerns only the second invalidity case (i.e., adding an
element that already exists into a context). This case also
contains two possibilities: (a) element a already exists in
context C at the head of the batch, and (b) after the addition
change is moved to the head of the batch, there exists
another later addition change on element a as well, without
any prior change of deleting a from C. For (a), since the
original batch of context changes is valid, it must contain
<−, C, a> and then <+, C, a> (may not be consecutive;
<+, C, a> is the addition change to move). So now the
situation is: for the original batch, we have a existing in C,
followed by changes <−, C, a> and then <+, C, a>; for
the new batch, we also have a existing in C, but followed
by changes <+, C , a> and then <−, C, a>. It seems
invalid for the new batch, but if one allows a duplicated a
temporarily existing in C, the invalidity will soon disappear
automatically when applying change <−, C, a>. So our
treatment is to support such temporary duplication, which
has no negative consequence to constraint checking later.
For (b), this is impossible, as since the original batch of
context change is valid, it must contain a change sequence
of <+, C, a>, <−, C, a>, and <+, C, a> (may not be
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consecutive; the second <+, C, a> is the addition change
to move), and this sequence will certainly cause an impact
sequence of inc+, inc−, and inc+, or inc−, inc+, and inc−,
either of which already violates GEAS’s s-conditions that
form this batch. Therefore, moving the addition change will
neither incur any invalidity case nor affect the equivalence
of contexts resulting from the new batch or the original
batch.

As a summary, we prove that for the (1) step (applying
changes), moving the change pair that satisfies the (2) and
(3) parts of constraint s’s c-condition to the head of the
batch will neither incur any invalidity case nor affect the
equivalence of contexts resulting from the new batch or the
original batch. As such, the (2) step (checking contexts) will
always return the same constraint checking results since the
checked contexts are the same no matter whether one moves
the change pair or not. This completes the proof for the order
equivalence.

Based on this theorem, one can safely remove the “head-
ing, consecutive” precondition (i.e., the (1) part in the c-
condition definition), so that GEAS-opt can apply to more
context change pairs. In fact, our later evaluation shows
that GEAS-opt can thus cancel around 80% changes from
the batches formed by GEAS-ori. This enables a further
improvement on the efficiency of context inconsistency de-
tection, although there is some other overhead incurred by
the optimization.

To use this change-cancellation technique, we present
Algorithm 4 to explain the c-condition examination pro-
cess. Note that for ease of presentation, we still name the
relaxed c-condition (i.e., after removing the (1) part) as c-
condition. The algorithm explains how to examine change
pairs against c-conditions at runtime to identify those that
can be removed without affecting inconsistency detection
results. For the efficiency concern, the examination process
works in an incremental way, similar to our aforementioned
s-condition matching process in Section 3.3.

In the algorithm, each pair formed by context changes
from consistency constraint s’s batch and the new change
chgnew is examined to see whether it satisfies the (2) and (3)
parts of s’s c-condition. For part (2), we use the evaluating
function to validate whether the two changes in the pair
always produce equal truth values for all concerned bfunc
nodes on constraint s’s runtime tree based on its last status
lastTree (Lines 4–6). Note that evaluating invokes “adapted
constraint checking techniques” in Step 4 (Section 4.1), but
concerns truth value evaluation only (i.e., no link gener-
ation), which is extremely efficient (Section 4.2). For part
(3), we use the affecting function to ensure that no critical
node on constraint s’s runtime tree will be affected by the
two changes in the pair (Line 8). One can observe that the
(1) part is no longer involved, and that when the (2) and
(3) parts are satisfied, the examining process will terminate
with the concerned change chgi from constraint s’s batch to
form the change pair for cancellation with the new change
chgnew (Line 9). Otherwise, no change can be canceled and
the process returns null.

As a summary, in this step GEAS-opt examines and
identifies those context change pairs that satisfy our relaxed
c-conditions for cancellation (with the support of our order

Algorithm 4: (c-condition-examining) Examining con-
text changes against c-conditions

Input: consistency constraint s, new context change
chgnew

Output: examining result chg // the change to pair
1 chg ← null
2 for each chgi ∈ s.batch do
3 // examine part (2)
4 tvs1 ← evaluating(s.lastTree, chgi)
5 tvs2 ← evaluating(s.lastTree, chgnew)
6 if allEqual(tvs1, tvs2) then
7 // examine part (3)
8 if !affecting(s.lastTree, chgi) &&

!affecting(s.lastTree, chgnew) then
9 chg ← chgi

10 break

11 return chg

Algorithm 5: (batch-forming-and-refining) Forming and
refining batches by adaptive grouping and change
cancellation

Input: set of consistency constraints S , new context
change chgnew

Output: set of consistency constraints S (updated)
1 for each s ∈ S do
2 if s-condition-matching(s, chgnew) then
3 s.newBatch← <chgnew>

4 else
5 chg ←c-condition-examining(s, chgnew)
6 if chg == null then
7 s.batch← append(s.batch, chgnew)

8 else
9 s.batch← remove(s.batch, chg)

10 updating(s.lastTree, chg, chgnew)

11 return S

equivalence theorem). Then the batches of context changes
formed by GEAS-ori can be refined, and we explain the
batch-refining process below.

4.4 Updated Step 3: Forming and Refining Batches

Now based on the matching results of s-conditions and
examining results of c-conditions, GEAS-opt can form and
refine batches of context changes for constraint checking.

Note that this forming and refining process extends
our aforementioned forming process (Algorithm 2 in Sec-
tion 3.4). So it is an updated Step 3 (Section 4.1), and we
present it in Algorithm 5. For each consistency constraint
s, the algorithm decides whether to initiate a new batch
for the new context change chgnew or allow this change
into constraint s’s existing batch, according to the matching
results of s’s s-conditions (Line 2). This part resembles its
corresponding one in Algorithm 2. Nevertheless, for the
later case, the process additionally examines whether there
exists any pair formed by changes from constraint s’s batch
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and the new change chgnew that satisfies s’s c-condition
(Line 5). If no (null returned), chgnew will be appended
to constraint s’s existing batch (Line 7) as in Algorithm 2.
Otherwise, s’s c-condition is satisfied, and chgnew will be
canceled (by no longer appending it to the batch) instead,
together with its paired change (by the remove function)
identified by c-condition-examining function (Line 9). Fi-
nally, the two elements (chg and chgnew) concerned in the
two canceled changes need some follow-up actions by the
updating function (Line 10), as we explained below.

For a pair of context changes for cancellation (chg and
chgnew), as we analyzed earlier, although they may concern
different elements (e.g., adding element a into context C
and then deleting b from C), their impacts are opposite.
For rare cases, the two elements (say, a and b) happen to
be the same (i.e., a = b). Then there is nothing one has to
follow after canceling them. However, for most cases, they
are not the same. Then one has to eliminate any possible
side effect (i.e., making the effect of canceling both changes
exactly equal to not canceling them at all). Note that our
optimization is based on the evaluation on all changes in
a constraint’s current batch, but does not account for any
side effect caused by future changes not coming yet. For
the preceding example (i.e., changes <−, Cx, r3> and <+,
Cx, r4>), canceling both changes will not affect constraint
checking of all changes in the concerned constraint’s batch,
as we analyzed earlier. However, canceling them will lead to
element r3 remaining in the context pool, but not canceling
them will lead to r4 in the context pool. It is possible that
they have different constraint checking results with future
changes. Therefore, to eliminate such possible side effect
(although not coming yet), one has to replace all occurrences
of r3 with those of r4, so that everything will look as if no
cancellation had occurred.

For non-cache-based constraint checking techniques
(e.g., ECC, Con-C, and GAIN), one only needs to make the
element replacement (e.g., from r3 to r4) in the context pool.
For cache-based constraint checking techniques (e.g., PCC),
such techniques conduct constraint checking incrementally
based on both the context pool and runtime trees. Then,
besides updating the context pool, one also needs to update
related variable assignments (e.g., from vx = r3 to vx =
r4) in all related runtime trees. The updating function in
Algorithm 5 (Line 10) exactly conducts such replacements.
We note that making such replacements is efficient, since: (1)
updating the context pool is straightforward, (2) updating
variable assignments concerns part of branch information
only, not affecting any structure of the runtime trees, and (3)
the most complex data structure concerns links maintained
in cache-based constraint checking [6], but no link will
involve any element in canceled change pairs (explained
in Step 5.2 in Section 4.2), and thus links are free of any
updating action.

As a summary, in this step GEAS-opt forms and refines
batches for context changes based on both s-conditions
and c-conditions. By additionally considering c-conditions,
GEAS-opt cancels those change pairs that are unnecessary
for constraint checking, without missing any inconsistency
detection result with theoretical guarantee. Besides, with
such cancellation, GEAS-opt reduces the number of context
changes for checking, leading to further improved inconsis-

tency detection efficiency. In the following, we experimen-
tally evaluate our GEAS-ori and GEAS-opt.

5 EVALUATION

In this section, we evaluate our GEAS’s performance on a
taxi application with large-volume real-world data.

5.1 Research Questions
In this work, we propose GEAS to improve context incon-
sistency detection. From our earlier problem formulation
(Section 2.5), it contains two objectives: quality and effi-
ciency. As such, GEAS’s performance should be evaluated
on whether and how the two objectives are fulfilled. To do
so, we evaluate whether GEAS can fulfill highly-efficient
zero-missing context inconsistency detection, i.e., whether
GEAS can help existing constraint checking techniques
to greatly improve the inconsistency detection efficiency
without missing any inconsistency detection result. This
aims for GEAS’s effectiveness (RQ2). Besides, we are inter-
ested in GEAS’s overhead, i.e., what time cost is required
for GEAS’s effectiveness in its offline analyses and online
matching/examination, and whether the cost will compro-
mise its effectiveness (RQ3). On the other hand, GEAS
should also compare to existing strategies (i.e., immediate
scheduling and batch-based scheduling) to justify its moti-
vation and validate its unique advantages (RQ1 and RQ3).
Therefore, we study the following three research questions
in the evaluation.

We raised research questions as follows.
RQ1 (Motivation): How serious is the inconsistency missing

problem with the traditional batch-based scheduling in context
inconsistency detection, as compared to immediate scheduling?

RQ2 (Effectiveness): How effective is GEAS in improving
the efficiency of existing constraint checking techniques and in
protecting inconsistency detection results, as compared to imme-
diate scheduling and batch-based scheduling?

RQ3 (Overhead): How much time does GEAS take in
its offline s-condition/c-condition analyses and online s-condition
matching/c-condition examination?

5.2 Experimental Design and Setup
To answer the three research questions, we first introduce
the resources used in the experiments, which include the
subject (a taxi application), data (taxi data used by the appli-
cation), and consistency constraints (constraints for governing
the consistency of the taxi data). We then explain the exper-
imental process and setup with these resources. Finally, we
explain how to answer the research questions through the
designed process.

Subject. We selected a taxi application, SmartCity, with
its large-volume real-world taxi data as our experimental
subject. It was launched by an Urban Transport Planning
Center for its smart city perspective in a city of South China.
We selected this application because it has been used in
previous research [6], [7], [10], [11], [12], and this facilitates
our comparison.

The SmartCity application focuses on a city’s traffic
conditions for several hot areas as well as the whole city.
For each hot area, the application maintains a collection



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2898976, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 201X 19

of recent taxi conditions (e.g., GPS data, taxi ID, driving
speed, driving direction, and service status) for taxis driving
inside this area. Such taxi conditions are regarded as the
context associated with the hot area, which is subject to
change from time to time. Based on all such contexts, the
application evaluates the traffic conditions for hot areas as
well as the whole city. Then it can provides smart services,
like smart routing (i.e., recommending an optimal route
to a destination for a requesting driver), and traffic jam
avoidance (i.e., adjusting the route when there is any jam
occurring ahead).

Data. For the SmartCity application, we obtained a to-
tal of 1.55 million taxi data (i.e., the aforementioned taxi
conditions), which cover 760 distinct taxis monitored within
a continuous period of 24 hours. These 1.55 million raw
data correspond to 6.75 million context changes according
to the context design in the application. Fig. 7 shows the
distribution of context changes for 24 hour-based groups
(0–23).

Each group i (0 ≤ i ≤ 23) includes all context changes
from the start of an hour (inclusive) to that of its next
hour (exclusive), starting from 11am. For example, group
0 represents the context changes collected in the time slot of
11am–12noon, and group 1 is for 12noon–1pm. We observe
that the numbers vary greatly, from 180,218 to 365,688 (up
to a 185,470 or 103% difference), and this makes them incur
different workloads to constraint checking (e.g., lightest
workload around 4am–6am, and the heaviest workload for
rush hours 5pm–7pm). Besides, the taxi data also have
different features in different groups, and this also affects
the checking workload (e.g., after the midnight, most taxi
conditions contain a “no service” tag, which makes some
constraints evaluated to a different value, leading to a
lighter checking workload). These features make the whole
data set representative for evaluating different constraint
checking techniques on their abilities against various work-
loads.

Consistency constraints. The SmartCity application was
with 22 consistency constraints, from previous research [6],
[7], [10], [11], [12], and originally from its developer, the
Urban Transport Planning Center [6]. The constraints cover
all seven formula types, which are complete to the constraint
language (Section 2.2). The constraints are stored in the
form of XML files for fetching and checking by our GEAS
implementation.

These consistency constraints specify different necessary
properties that must hold about the aforementioned con-
texts (e.g., taxi conditions about hot areas). Some constraints
concern all monitored taxis in the city, and enforce speed
limits on these taxis (e.g., no more than 200 km/h, which
is a reasonable upper limit for the city [6]), or location
restrictions (e.g., a taxi should not appear in a restricted
area like sea). Other constraints concern only those taxis
inside hot areas, and enforce their spatial restrictions (e.g.,
a taxi cannot appear in two distinct areas at the same time).
Besides, these constraints may also check different fields
in taxi conditions in the contexts (e.g., some constraints
focus only on those taxis with a tag set to “on service” or
“no service”). This makes these constraints incur different
workloads in terms of checking complexity, and become
suitable artifacts for evaluating different constraint checking

0

100,000

200,000

300,000

400,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
ha

ng
e

(#
)

Group

Distribution of context changes for 24 groups

Fig. 7: Distribution of context changes for 24 hour-based groups

techniques.
Note that the SmartCity application has a clear connec-

tion with the package delivery application discussed in our
motivating example (Section 2.4), which contains several
mapping relations: (1) regarding contexts, the locations of
taxis in hot areas in the city can correspond to those of robots
in warehouses; (2) regarding context changes, the location
changes of taxis across different hot areas can correspond
to those of robots across different warehouses; (3) regarding
consistency constraints, the restrictions on location changes
of taxis can correspond to those on locations changes of
robots, and additionally the SmartCity application considers
more properties about taxi attributes like speed and service
status. These mapping relations help immigrate conceptu-
ally from the package delivery application in the motivating
example to the SmartCity application in our evaluation.

Process. Our experiments contain two phases, namely,
preparation and execution.

For the preparation phase, we derive s-conditions and
c-conditions from the 22 consistency constraints for use
by GEAS. For s-conditions, we derived a total of 340 s-
conditions from these constraints (min: 4, max: 16, avg: 15.5).
We observe that the derivation is extremely efficient (several
milliseconds). For c-conditions, we have already inferred
them in Section 4.2, and thus no extra time is required here.

For the execution phase, we implemented all schedul-
ing strategies and constraint checking techniques in Java
to facilitate experimental comparisons. In particular, all
scheduling strategies are straightforward in their semantics
and thus implemented in a single-threaded manner. Regard-
ing constraint checking techniques, their implementations
follow their built-in algorithms, e.g., single-threaded and
non-incremental for ECC, single-threaded and incremental
for PCC, multi-threaded with multi-CPU support for Con-
C, and multi-threaded with multi-GPU support for GAIN.
We combined these implemented scheduling strategies and
constraint checking techniques as a consistency manage-
ment [38] service. In experiments, we used a middleware-
based architecture following conventional consistency man-
agement [6]. That is, the SmartCity application runs on top
of the middleware, and the middleware is responsible for
feeding context changes to the application. The consistency
management is integrated as part of services in the middle-
ware and can be configured with any specific scheduling
strategy and constraint checking technique working with
given consistency constraints. We collected each combina-
tion’s inconsistency detection results and spent time for
comparisons from the middleware. We measure the actual
time required by each combination for checking given con-
text changes. To do so, we made all context changes fed to
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the combination in a sequence and this process proceeded
only when the last checking completed.

Setup. To follow the aforementioned experimental pro-
cess (i.e., checking taxi context changes against consistency
constraints), we design the following four independent vari-
ables related to the setting of each combination and its
checking workload.

• Scheduling strategy. We study the three scheduling
strategies discussed in this article, namely, immedi-
ate scheduling (IMD), batch-based scheduling (BAT),
and our GEAS (two versions, i.e., GEAS-ori and
GEAS-opt).

• Batch size. This is a secondary setting only for the BAT
strategy, as BAT can be customized with different
batch sizes as we discussed earlier. We controlled the
batch size from 2 to 10, with a pace of 1. The minimal
value 2 was selected because 1 would make BAT
become IMD. The maximal value 10 was selected
because it made BAT reach an inconsistency missing
rate near 80%, which is already unacceptable.

• Constraint checking technique. We study the four con-
straint checking techniques, namely, ECC [8], Con-
C [10], GAIN [11], and PCC [6] (by our adapted
PCCm), which are state-of-the-art and also discussed
in this article (the former three as non-cache-based
techniques and the last one as cache-based). They
can all work with the preceding three scheduling
strategies to form different combinations.

• Checking workload. As mentioned earlier, different
groups of context changes contain different numbers
of context changes as well as different field values,
which will incur different checking workloads. As
such, we used the 24 groups of context changes
to evaluate and compare the performance of each
strategy-technique combination.

Then, to evaluate the performance of each combination
(required by the three research questions), we design two
dependent variables:

• Inconsistency missing rate. It refers to the proportion
of missed context inconsistencies (i.e., those not de-
tected) against all inconsistencies in theory (using
IMD as the baseline), which is for measuring the qual-
ity of context inconsistency detection (Section 2.5).

• Checking time. It refers to the amount of total
time spent on checking context changes (includ-
ing scheduling, checking, and any extra overhead),
which is for measuring the efficiency of context incon-
sistency detection (Section 2.5).

Finally, we controlled some running environmental fac-
tors for facilitating the experiments. All experiments were
conducted on a commodity PC with an Intel R© CoreTM i7-
6700 CPU @3.41GHz with 16GB RAM and an Nvidia GTX
750 Ti card with 640 CUDA cores. The machine was installed
with MS Windows 10 Professional and Oracle Java 8.

To answer RQ1 (motivation). We apply two schedul-
ing strategies (IMD and BAT) to compare their perfor-
mance. IMD schedules constraint checking upon each con-
text change, and thus it serves as the oracle for detecting

all context inconsistencies in theory. BAT schedules con-
straint checking upon every k context changes, where k
is the batch size. This would improve BAT’s efficiency by
reduced scheduled checking, but also incur missed context
inconsistencies. We would observe in the experiments how
serious the inconsistency-missing situation is for BAT, and
this would motivate our new proposal GEAS.

To answer RQ2 (effectiveness). We apply both GEAS’s
two versions (GEAS-ori and GEAS-opt), combined with the
four constraint checking techniques (ECC, Con-C, GAIN,
and PCC), to evaluate their performance, and compare it
to that of the existing two scheduling strategies (IMD and
BAT). GEAS should fulfill our targeted desirable scheduling
strategy’s two objectives, namely, quality and efficiency
(Section 2.5). Regarding the quality objective, GEAS should
never miss any context inconsistency in the detection, as
contrast to BAT’s high inconsistency missing rate. Regarding
the efficiency objective, GEAS should be able to help all the
four constraint checking techniques improve the detection
efficiency, as compared to these techniques combined with
IMD.

We first study how GEAS-ori is compared to IMD and
BAT in preventing missing context inconsistencies and im-
proving inconsistency detection efficiency. We then study
the impact of batch size on BAT, i.e., how GEAS-ori is
compared to BAT with various batch sizes. We next study
the impact of constraint checking technique on GEAS-ori,
i.e., how GEAS-ori is compared to IMD when it is com-
bined with different constraint checking techniques. We also
study the impact of checking workload on GEAS-ori, i.e.,
whether GEAS-ori’s improvement on a constraint checking
technique’s inconsistency detection efficiency is consistent
with various workloads. We finally compare GEAS-ori to
GEAS-opt to see how the latter improves over the former,
and also study its underlying reasons. The five studies to-
gether validate the effectiveness of our GEAS’s two versions
(GEAS-ori and GEAS-opt).

To answer RQ3 (overhead). Finally, we measure GEAS’s
time cost in its offline s-condition analysis and on-
line s-condition matching/c-condition examination, to see
whether the cost will compromise its effectiveness studied
in RQ2. We study the time cost for GEAS’s both versions
(GEAS-ori and GEAS-opt).

5.3 Experimental Results and Analyses
In the following, we analyze the experimental results and
answer the preceding three research questions in turn. For
ease of presentation, we refer to a combination of a spe-
cific scheduling strategy x and a specific constraint check-
ing technique y by the notation of x+y, e.g., IMD+ECC,
BAT+PCC, and so on.

5.3.1 RQ1: Motivation
For research question RQ1, we conducted experiments to
apply the IMD and BAT strategies to checking 6.75 mil-
lion context changes in the SmartCity application. When
combined with the IMD strategy, some techniques (e.g.,
ECC) are not so efficient, and can cost much more time
than affordable by applications. For example, Fig. 8 shows
IMD+ECC behaves with respect to 24 groups of hour-based
context changes.
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In Fig. 8, we observe that the checking time varies greatly
across different groups (from 1.5 minutes to 243.8 minutes,
more than 100x difference), which is roughly proportional
to the number of context changes in each group (in Fig. 7).
This validates our earlier conjecture that the workload can
directly affect the checking time of a specific constraint
checking technique. For this example, what is worth notic-
ing is that for many groups (14 out of 24, or 58.3%), the
checking time has already exceeded the corresponding af-
fordable limit, as the red dashed line illustrates in Fig. 8.
The limit is set for illustration only, and its physical meaning
is exactly one hour, exceeding which would suggest that
checking all context changes takes even more time than
that of collecting these changes, making such checking not
meaningful in practice. Besides, the worst case is with
group 7, which took IMD+ECC 243.8 minutes (more than
four hours) to complete the checking, 306.3% exceeding the
limit. Therefore, the IMD strategy is unacceptable when the
workload is extremely heavy or the combined constraint
checking technique is not that efficient. Considering various
practical scenarios, this motivates for a better scheduling
strategy that should be able to greatly reduce the checking
time, as we claimed earlier.

For the comparison, Fig. 9 shows how BAT+ECC be-
haves with respect to all 24-hour context changes, when the
BAT strategy is set with different batch sizes (from BAT-
2 to BAT-10), and compares it to the IMD strategy, which
is conceptually equivalent to BAT-1. To illustrate whether
they have exceeded the 24-hour limit for all the context
changes, we similarly use a red dashed line to represent the
limit (similarly, exceeding this limit would suggest that such
checking is not meaningful in practice). We observe that: (1)
the IMD strategy took 2,279.0 minutes (about 38 hours) to
complete the checking (58.3% exceeding the limit), (2) the
BAT-2 strategy took only 1,121.8 minutes (about 19 hours)
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Fig. 10: Detected context inconsistencies and inconsistency
missing rate comparison for the IMD and BAT strategies with
respect to all 24-hour context changes

to complete, which already satisfies the limit and suggests
BAT’s immediate effectiveness on reducing the checking
time, and (3) the BAT-x strategy took consistently decreasing
checking time, with the growth of its batch size x, whose
reduction rate can be up to 90.1% for BAT-10. However,
the BAT strategy’s seemingly promising effectiveness on
reducing the checking time is accompanied with an uncom-
fortably high inconsistency missing rate, as Fig. 10 shows.

Fig. 10 compares the BAT strategy (with different batch
sizes) to the IMD strategy on detected context inconsisten-
cies and inconsistency missing rate with respect to all 24-
hour context changes. We note that IMD’s detected context
inconsistencies serve as the oracle, as explained earlier (Sec-
tion 5.2), for validating BAT’s detected ones. In Fig. 10, we
observe that: (1) with the growth of its batch size, the BAT
strategy detected a nearly decreasing number of context
inconsistencies, whose corresponding inconsistency missing
rate keeps increasing and can be up to 79.2% for BAT-10,
which is significant and suggests a clearly unacceptable
result (most inconsistencies are missed), and (2) even if one
sets the BAT strategy’s batch size to its minimal value of
2, its corresponding inconsistency missing rate is still as
high as 51.8%, suggesting that more than half of context
inconsistencies are missed. From these observations, we
conclude that the BAT strategy cannot be useful for con-
straint checking due to its high inconsistency missing rate,
although it can help reduce the checking time.

Therefore, we answer research question RQ1 as follows:
Both the IMD and BAT strategies are undesirable. The for-
mer seriously limits the efficiency of context inconsistency
detection, which the latter causes severe context inconsistency
missing problems. This calls for a new scheduling strategy that
can both improve the inconsistency detection efficiency and
protect inconsistency detection results.

5.3.2 RQ2: Effectiveness

For research question RQ2, we compare our GEAS (GEAS-
ori and GEAS-opt) with the IMD and BAT strategies on
their context inconsistency detection efficiency and quality.
We study the aforementioned five aspects, namely, selected
scheduling strategy (GEAS-ori, IMD, or BAT), customized
BAT’s batch size (from 2 to 10), selected constraint checking
technique (ECC, Con-C, GAIN, or PCC), varying checking
workload (24 groups of context changes), and applied opti-
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mization (GEAS-ori or GEAS-opt). We collect experimental
results and analyze the five aspects in turn.

Aspect of selected scheduling strategy. We fix values
of other independent variables to study how the selection
of a specific scheduling strategy affects the efficiency and
quality of context inconsistency detection. As such, we set
the batch size to be 5 (half of its maximal value) for the BAT
strategy, the combined constraint checking technique to be
ECC, and the checking workload to be all 24-hour context
changes as a whole. With this setup, we study the three
scheduling strategies, namely, IMD, BAT-5, and our GEAS-
ori, and compare their checking time and inconsistency de-
tection results. We present the comparisons in Fig. 11 (on the
checking time) and Fig. 12 (on the detected inconsistencies
and missing rate).

In Fig. 11, we observe that IMD+ECC took the most
time, 2,279.0 minutes, to complete checking all 6.75 million
context changes. As mentioned earlier, this time cost already
exceeds the 24-hour limit and is thus unacceptable. When
using the BAT-5 strategy, it took only 449.0 minutes, with
an 80.3% reduction to what IMD took. This is already below
the limit and is promising. Nevertheless, when using the
GEAS-ori strategy, the time cost was further reduced to
341.8 minutes, with an 85.0% reduction to that of IMD. These
results suggest that both the BAT-5 and GEAS-ori strategies
can help greatly reduce the checking time, corresponding
to a large efficiency improvement of 407.6% and 566.7%,
respectively.

We then compare BAT-5’s and GEAS-ori’s context incon-
sistency detection results and inconsistency missing rates in
Fig. 12. As explained earlier, we used IMD+ECC’s detected
context inconsistencies (103,705) as the oracle for the com-
parison. We observe that: (1) the BAT-5 strategy detected
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only 32,277 inconsistencies, corresponding to a 68.9% in-
consistency missing rate, which is quite frustrating; (2) on
the contrary, the GEAS-ori strategy detected all 103,705 in-
consistencies, suggesting a zero inconsistency missing rate,
which is inspiring. Therefore, although the BAT-5 strategy
(as a representative of the batch-based scheduling) can help
improve the checking efficiency, its caused inconsistency
missing problem is severe and unacceptable. On the con-
trary, our GEAS-ori strategy improves the efficiency even
more, and at the same time protects each context incon-
sistency, i.e., all inconsistencies being successfully detected.
This suggests that GEAS-ori is desirable, in terms of both
our earlier analyzed efficiency and quality objectives.

Aspect of customized BAT’s batch size. We then study
how GEAS-ori is compared to BAT when the latter is cus-
tomized with different batch sizes. Fig. 13 and Fig. 14 show
the comparison results. From the two figures, we observe
that with the growth of its batch size (from 2 to 10), BAT’s
checking time was consistently decreasing (from 49.2% to
9.9%, as compared to that of IMD), but at the same time
caused a nearly increasing inconsistency missing rate (from
51.8% to 79.2%). These results are also shown in earlier
Fig. 9 and Fig. 10. As a comparison, GEAS-ori took much
less checking time (15.0%), and did not miss any context
inconsistency in the detection (0% missing rate).

In the experiments, we are particularly interested in two
comparisons: (1) GEAS-ori vs. BAT-7: BAT-7’s checking time
(365.2 minutes) is the closest to that of GEAS-ori (341.8
minutes). This indicates that BAT can be customized with
a specific batch size so as to achieve a similar inconsis-
tency detection efficiency improvement as GEAS-ori. How-
ever, their corresponding inconsistency missing rates differ
greatly: 73.9% vs. 0%, and this indicates that when BAT is
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Fig. 15: Checking time comparison for the IMD and GEAS-
ori strategies (combined with the ECC, Con-C, GAIN, and
PCC techniques, respectively) with respect to all 24-hour
context changes

TABLE 2: Inconsistency missing rate comparison for the IMD
and GEAS-ori strategies (combined with the ECC, Con-C,
GAIN, and PCC techniques, respectively) with respect to all
24-hour context changes

Technique
Missing rate Scheduling strategy

IMD GEAS-ori

ECC/Con-C/GAIN/PCC 0% 0%

customized close to GEAS-ori in efficiency improvement,
BAT is actually useless due to its high missing rate. (2)
GEAS-ori vs. BAT-4 (BAT-mimic): BAT-mimic is customized
with a batch size equal to GEAS-ori’s averaged batch size
during its inconsistency detection. The averaged value is
3.58, to which the closest integer batch size is 4 for BAT. Thus
we consider BAT-4 as BAT-mimic, which is supposed to be
able to mimic GEAS-ori’s behavior. However, we observe
that BAT-mimic’s checking time is 64.6% more than that of
GEAS-ori, and that BAT-mimic’s inconsistency missing rate
is 68.9%, as compared to 0% of GEAS-ori. This indicates
that when BAT is customized close to GEAS-ori in the batch
size, BAT is both less effective in efficiency improvement
and useless due to its high missing rate.

Combining the preceding comparisons and analyses, we
conclude that: (1) no matter which batch size BAT is cus-
tomized to, it cannot be compared to GEAS-ori; (2) GEAS-
ori is effective in both efficiency improvement and inconsis-
tency protection, not because of its batch-based scheduling
nature, but because of its adaptive batch size control for
separating different context changes.

Aspect of selected constraint checking technique. We
next study the impact of a selected constraint checking
technique on GEAS-ori, i.e., how GEAS-ori is compared to
IMD on the efficiency and quality of context inconsistency
detection when it is combined with different constraint
checking techniques. Fig. 15 and Table 2 show the compar-
isons for the four constraint checking techniques (ECC, Con-
C, GAIN, and PCC) on the checking time and inconsistency
missing rate, respectively, for all 24-hour context changes.

From Fig. 15, we observe that no matter which constraint

TABLE 3: Efficiency improvement comparison (estimated vs.
actual) for the GEAS-ori strategy, combined with three non-
cache-based constraint checking techniques (ECC, Con-C, and
GAIN)

Checking
technique

Scheduling
(#)

Estimated
efficiency
improve-

ment

Actual
efficiency
improve-

ment

ECC m: 2,216,748
(against

n: 7,929,458)
+257.7% *

+566.7%
Con-C +547.3%
GAIN +504.5%

* calculated by (n − m) / m.

checking technique is combined, the GEAS-ori strategy con-
sistently largely reduced the checking time, as compared to
the IMD strategy. The reduction rate is 85.0% for ECC, 84.6%
for Con-C, 83.5% for GAIN, and 28.0% for PCC, which are
significant. We note that the reduction rate seems not large
for PCC (28.0%), but PCC works incrementally (different
from the other three techniques) and is already the most
efficient checking technique. For such an efficient technique,
our GEAS-ori strategy can still help it reduce the checking
time by 28.0%. As a result, GEAS-ori+PCC becomes the
most efficient combination among all. Therefore, GEAS-
ori can uniformly reduce the checking time for context
inconsistency detection, as compared to IMD, although the
reduction rate can vary with different constraint checking
techniques.

We then study the efficiency improvement of GEAS-ori
against IMD from another perspective. Table 3 compares the
efficiency improvement using our earlier estimated formula
(i.e., (n − m) / m, in Section 2.5) and actual measurement,
respectively, where n is the number of context changes,
which equals to the number of scheduled constraint check-
ing for IMD, and m is the number of scheduling for GEAS-
ori, for the three non-cache-based constraint checking tech-
niques (ECC, Con-C, and GAIN). We observe that for the
three techniques, the estimated efficiency improvement is
257.7% (independent of the combined checking technique,
only decided by the scheduling strategy), and that the actual
efficiency improvement is 566.7%, 547.3%, and 504.5%, re-
spectively. The latter is 1.96x–2.20x of the former. This result
indicates that: (1) GEAS-ori indeed improves over IMD and
its improvement extent is comparable to our estimation; (2)
the improvement extent seems better than expected, and this
is because the estimation assumes that each checking takes
the same time (as analyzed earlier in Sections 2.5 and 3.5),
but it may not necessarily hold for practical data. Regarding
the cache-based constraint checking technique PCC, GEAS-
ori uses its adapted version, i.e., PCCm, for combination.
As analyzed earlier in Section 3.5, each new change has
to be checked, and when GEAS-ori reduces the number
of PCCm scheduling, PCCm itself will have more changes
to check in each checking (since it works incrementally).
Thus GEAS-ori+PCC’s efficiency improvement will not fol-
low the estimation formula, but accumulating the checking
results for multiple changes can now be done in one run
instead of multiple runs, and thus GEAS-ori+PCC can still
win IMD+PCC, i.e., 38.8% efficiency improvement.
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Fig. 16: Checking time comparison for the IMD and GEAS-
ori strategies (combined with the ECC, Con-C, GAIN, and
PCC techniques, respectively) with respect to 24 hour-based
groups

We also compare the inconsistency missing rate for the
IMD and GEAS-ori strategies when combined with different
constraint checking techniques in Table 2. From the table, we
observe that no matter which constraint checking technique
is combined, the GEAS-ori strategy consistently maintained
zero inconsistency missing rate, as if no grouping of context
changes occurred (i.e., as IMD did).

Combining the preceding comparisons and analyses,
we conclude that no matter which constraint checking
technique is combined, GEAS-ori can always improve the
context inconsistency detection efficiency and at the same
time protect all inconsistency detection results.

Aspect of varying checking workload. We next study
the impact of the checking workload on the GEAS-ori strat-
egy, i.e., whether GEAS-ori’s improvement on a constraint
checking technique’s inconsistency detection efficiency is
consistent with various workloads. We have 24 groups of
context changes, which are naturally formed from 24 hours
of raw taxi data, representing varying checking workloads,
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Fig. 17: Checking time comparison for the GEAS-ori and
GEAS-opt strategies (combined with the ECC, Con-C,
GAIN, and PCC techniques, respectively) with respect to
all 24-hour context changes (IMD data for reference)

TABLE 4: Inconsistency missing rate comparison for the GEAS-
ori and GEAS-opt strategies (combined with the ECC, Con-C,
GAIN, and PCC techniques, respectively) with respect to all
24-hour context changes (IMD data for reference)

Technique
Missing rate Scheduling strategy

IMD GEAS-ori GEAS-opt

ECC/Con-C/GAIN/PCC 0% 0% 0%

as discussed earlier in Section 5.2. Therefore, we observe
how GEAS-ori is compared to IMD for different work-
loads when combined with the four constraint checking
techniques (ECC, Con-C, GAIN, and PCC). Fig. 16 (a)–
(d) show the comparisons on the checking time for the
four techniques, respectively (we no longer compare the
inconsistency missing rate since it is always zero, as studied
in the last aspect).

From Fig. 16, we observe that different groups of context
changes (representing different workloads) indeed incur
greatly varying checking time (up to more than 100x dif-
ference), but the difference between GEAS-ori and IMD is
basically consistent across different groups, no matter which
constraint checking technique is combined: (1) with ECC,
GEAS-ori achieved 80.3%–85.9% checking time reduction
(average: 84.7%) against IMD across different groups; (2)
with Con-C, the reduction is 68.5%–85.2% (average: 82.7%)
for GEAS-ori vs. IMD; (3) with GAIN, the reduction is
82.8%–84.3% (average: 83.7%); (4) with PCC, the reduction
is 17.3%–29.2% (average: 26.6%). Overall, the time reduction
is around 80% for non-cache-based techniques (ECC, Con-C,
and GAIN) and around 25% for the cache-based technique
PCC, across different groups of context changes, with little
variance, as illustrated in Fig. 16.

Therefore, we conclude that GEAS-ori’s effectiveness on
the efficiency improvement for context inconsistency detec-
tion is stable for different constraint checking techniques,
even if its checking workload varies with different taxi data.

Aspect of applied optimization. Finally, we evaluate
and compare GEAS-opt to GEAS-ori to show how the
former additionally improves over the latter on the checking
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TABLE 5: Time cost analyses

Technique

Checking
time

For IMD For GEAS-ori For GEAS-opt
Online Offline Online Offline Online

Tcheck (min) Tanalysis (ms) Tcheck (min) Tschedule (min) Tanalysis (ms) Tcheck (min) Tschedule (min)

ECC 2,279.0

3.0

340.8

Around 1 min 3.0

69.8

Around 10 minCon-C 840.9 128.9 40.1
GAIN 214.0 34.4 5.3
PCC 49.0 34.3 8.2

time (Fig. 17) and inconsistency missing rate (Table 4) in
the context inconsistency detection for all 24-hour context
changes.

From Fig. 17, we observe that GEAS-opt greatly reduces
the checking time on top of GEAS-ori, no matter which
constraint checking technique is combined. The time reduc-
tion is 76.7% for ECC, 61.4% for Con-C, 56.8% for GAIN,
and 48.4% for PCC. Note that such efficiency improvements
are achieved over what GEAS-ori has achieved. Therefore,
taking IMD as the baseline, GEAS-ori’s and GEAS-opt’s effi-
ciency improvement is 566.7% and 2,755.9% for ECC, 547.3%
and 1,578.4% for Con-C, 504.5% and 1,298.7% for GAIN,
and 38.8% and 169.2% for PCC. This shows GEAS’s general
effectiveness on improving the efficiency of context incon-
sistency detection, as well as GEAS-opt’s additional benefits
over GEAS-ori. Besides, from Table 4 we observe that GEAS-
opt works as GEAS-ori, still keeping zero inconsistency
missing rate, which is desirable, no matter which constraint
checking technique is combined. This shows GEAS-opt,
besides its additional efficiency improvement benefits, does
not bring any negative consequence.

To understand GEAS-opt’s superiority on efficiency im-
provement over GEAS-ori, we in the following further study
two factors that relate to GEAS-opt’s additional efficiency
improvement: (1) number of context changes removed
against GEAS-ori, and (2) batch size expanded against
GEAS-ori.

First, as mentioned earlier, GEAS-opt improves over
GEAS-ori by identifying and removing context change pairs
that satisfy c-conditions of concerned constraints during
context inconsistency detection. Fig. 18 (a) compares the
numbers of context changes actually checked by GEAS-ori
and GEAS-opt across 24 groups. We observe that GEAS-opt
removed around 80.1% of context changes (varying from
66.4% to 89.1%), which is significant. This reduced workload
directly contributes to GEAS-opt’s efficiency improvement
over GEAS-ori.

Second, GEAS-opt removes context changes satisfying c-
conditions, thus refining batches of context changes for con-
straint checking, and if one counts these removed changes,
GEAS-opt virtually increases its average batch size over
GEAS-ori. Fig. 18 (b) compares the average batch sizes
of GEAS-ori and GEAS-opt across 24 groups. We observe
that GEAS-opt formed batches of size 13.7 (varying 8.7
to 23.4), 3.8x of that of GEAS-ori (size 3.6, varying 2.9 to
3.9). This increased batch size further explains why GEAS-
opt largely improves over GEAS-ori on the inconsistency
detection efficiency, since now much more context changes
can be checked together.
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(a) The distribution of context changes actually checked across
different groups (difference between bars represents # removed
changes by GEAS-opt)
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(b) The distribution of the average (virtual) batch size across
different groups

Fig. 18: Underlying reason analyses for GEAS-opt’s superi-
ority over GEAS-ori

Combining the preceding five aspects of compar-
isons. we answer research question RQ2 as follows:

The GEAS strategy is effective in improving the efficiency of
context inconsistency detection and protecting inconsistency
detection results. The effectiveness is consistent with respect to
different constraint checking techniques, and stable for different
checking workloads. Besides, GEAS-opt improves much more
over GEAS-ori. Specially, GEAS-ori and GEAS-opt achieve
38.8%–566.7% (or 1.4x–6.7x) and 169.2%–2,755.9% (or
2.7x–28.6x) efficiency improvements over IMD, respectively,
when combined with existing techniques (ECC, Con-C, GAIN,
and PCC), and always maintain a zero inconsistency missing
rate. GEAS also beats BAT due to its carefully controlled
adaptive batch size, while the latter uses a fixed batch size and
can miss up to 79.2% inconsistencies.

5.3.3 RQ3: Overhead
Finally, we analyze each part of the checking time to un-
derstand GEAS’s overhead for supporting its effectiveness
on the efficiency improvement against IMD. The checking
time refers to the whole time cost of a strategy-technique
combination in checking given 24-hour context changes.
For the IMD strategy, it contains the online part only, i.e.,
the time used for checking all context changes (Tcheck). For
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the GEAS strategy (GEAS-ori and GEAS-opt versions), it
contains both the offline and online parts. The offline part
refers to the time used for s-condition analysis (Tanalysis),
which is necessary only for GEAS (Section 5.2). The on-
line part contains the conventional Tcheck (as IMD) and
additional time used for scheduling constraint checking
(Tschedule), as Algorithm 3 shows (Section 3.5). Therefore,
GEAS’s overhead is Tanalysis + Tschedule. We study whether
this overhead deserves GEAS’s reduction on the whole time
cost against IMD.

Table 5 lists each composed part of the checking time
or whole time cost for the IMD and GEAS strategies when
combined with four constraint checking techniques (ECC,
Con-C, GAIN, and PCC). From this table, we observe that:
(1) IMD’s time costs (only Tcheck) are clearly more than those
of GEAS’s both versions (Tanalysis + Tcheck + Tschedule),
as we studied earlier; (2) the first part of GEAS’s overhead
(Tanalysis) costs 3 milliseconds only, which is negligible
for both GEAS-ori and GEAS-opt; (3) the second part of
GEAS’s overhead (Tschedule) costs around 1 minute and
10 minutes, respectively, for GEAS-ori and GEAS-opt, and
occupies some portion of the whole time cost (GEAS-opt
costs more time than GEAS-ori as it additionally examines
c-conditions and updates concerned contexts, as explained
in Section 4.4). Combining all parts together, we find that
GEAS used an overhead of about 1 minute and 10 minutes,
respectively, for GEAS-ori and GEAS-opt, but earned a
reduction on the whole time cost of 13.7–1,937.2 minutes
and 30.8–2,199.2 minutes, against IMD. We thus conclude
GEAS’s cost-effectiveness of trading this small overhead for
much greater time reduction, achieving the overall efficiency
improvement on context inconsistency detection.

We observe that Tschedule seems large (around 10 min-
utes) to GEAS-opt as the major overhead. So we investigated
its details, which include costs for the s-condition matching,
c-condition examination, and batch forming and refining.
The first part occupies one minute, similar to that in GEAS-
ori. The second and third parts occupy about 6.4 and 2.6
minutes, respectively, forming an approximate ratio of 2.5 :
1. This ratio suggests that the c-condition examination took
relatively more time for finding a context change in the
current batch that has an opposite impact to the current
change, while updating runtime trees (major step in the
batch forming and refining) took less time, validating our
earlier conjecture that the updating is efficient (Section 4.4).
We further investigated the c-condition examination, and
observed that in over 60% cases the context change having
the opposite impact can be found at the first place in
the batch, and when considering the first three places the
percentage grows to over 75%. Considering that a batch has
a size of 13.7 on average (Section 5.3.2), “first three” implies
that the c-condition examination can find its target changes
for cancellation quickly. This also suggests that GEAS-opt’s
optimization based on opposite-impact change cancellation
can be easily conducted, since it does not require a pair of
context changes to contain exactly equal elements.

Therefore, we answer research question RQ3 as follows:
GEAS’s overhead is small and deserves its great efficiency
improvement on context inconsistency detection. In particular,
its time cost on the s-condition derivation is tiny and negligible.

TABLE 6: The selected three groups of context changes

Group
(workload) Period Context

change (#)
Average

interval (ms)

Light 4am–5am 136,488 26.4
Median 8am–9am 280,556 12.8
Heavy 5pm–6pm 773,136 4.7

5.4 Case Study

In previous Sections (5.1–5.3), we have evaluated GEAS’s
performance by controlled experiments. We now evaluate
GEAS’s effectiveness in a case-study setting. We controlled
a client thread to send context changes according to their
exact timestamps to simulate the actual traffic conditions.
We made a server client to receive the context changes and
detect context inconsistencies in these changes with different
strategy-technique combinations. Note that in previous con-
trolled experiments, context changes were checked in turn
and this process proceeded only when the last checking
completed. As a result, no change or inconsistency was
lost in the detection and we thus measured the actual
time cost for checking all changes. As a comparison, in
the case-study setting, context changes have to be checked
according to their associated timestamps, and as a result
changes might be missed or checked not at proper time
points if some strategy-technique combinations are of low
efficiency, leading to possible missed or wrongly reported
context inconsistencies (i.e., false negatives or false posi-
tives). Therefore, this setting is more like the real world.
By such measurement, we aim to evaluate GEAS’s practical
effectiveness in terms of detecting context inconsistencies
and improving the detection efficiency.

Setup. We use the same SmartCity application but pro-
cess a much larger dataset, which contains 11.53 million
context changes (originally 6.75 million) for a continuous
24-hour day and 48 consistency constraints (originally 22)
since it covers more vehicle types. We similarly partitioned
the 11.53 million context changes into 24 groups (hours) and
observed that these groups incur very different checking
workloads. For comparison purposes, we selected three
groups, representative as light, median, and heavy workloads,
for the periods of 4am–5am (136,488 context changes), 8am–
9am (280,556 changes), and 5pm–6pm (773,136 changes),
respectively, as shown in Table 6. Consider that each period
lasts one hour, their corresponding average intervals be-
tween sending every two consecutive changes are 26.4, 12.8,
and 4.7 milliseconds, respectively, showing an increasing
checking workload.

As previously evaluated, the BAT strategy has serious
limitations of missing context inconsistencies (up to around
80%) in the detection even given enough checking time, and
therefore we compare in the case study three scheduling
strategies, namely, IMD, GEAS-ori, and GEAS-opt, all of
which should not miss context inconsistencies in theory.
For each of these strategies, we combine with them all four
constraint checking techniques, namely, ECC, Con-C, GAIN,
and PCC. As a result, we obtain a total of 12 strategy-
technique combinations.

We measure three metrics, namely, false negative rate
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TABLE 7: Case study results

Group
(work-
load)

Checking
tech-
nique

Oracle For IMD For GEAS-ori For GEAS-opt

Inc (#) Inc/
* (#)

Tcost
(min) RFN/ RFP

Inc/
* (#)

Tcost
(min) RFN/ RFP

Inc/
* (#)

Tcost
(min) RFN/ RFP

Light
(4am–
5am)

ECC

784

784 3.68 0%/0% 784 1.76 0%/0% 784 0.58 0%/0%
Con-C 784 1.23 0%/0% 784 0.55 0%/0% 784 0.31 0%/0%
GAIN 784 0.73 0%/0% 784 0.34 0%/0% 784 0.23 0%/0%
PCC 784 0.22 0%/0% 784 0.20 0%/0% 784 0.17 0%/0%

Median
(8am–
9am)

ECC

6,912

565/
*390 61.82 94.4%/31.0% 6,912 17.98 0%/0% 6,912 4.40 0%/0%

Con-C 6,912 20.36 0%/0% 6,912 7.44 0%/0% 6,912 3.22 0%/0%
GAIN 6,912 11.18 0%/0% 6,912 4.33 0%/0% 6,912 2.09 0%/0%
PCC 6,912 2.57 0%/0% 6,912 1.83 0%/0% 6,912 1.13 0%/0%

Heavy
(5pm–
6pm)

ECC

11,556

212/
*147 63.74 98.7%/30.6% 1,153/

*280 61.09 97.6%/75.7% 1,074/
*387 59.22 96.7%/64.0%

Con-C 725/
*291 64.12 97.5%/60.0% 11,556 48.02 0%/0% 11,556 31.55 0%/0%

GAIN 2,813/
*1,709 61.78 85.2%/39.2% 11,556 33.51 0%/0% 11,556 27.19 0%/0%

PCC 6,095/
*5,483 59.80 52.6%/10.0% 11,556 29.43 0%/0% 11,556 26.22 0%/0%

* stands for the number of the true positives in the detection. If the datum after slash “/” is omitted, it means that all reported context
inconsistencies are true positives.

(RFN) for measuring the proportion of missed context in-
consistencies against all context inconsistencies that should
be reported, false positive rate (RFP) for measuring the pro-
portion of wrongly reported context inconsistencies against
all reported context inconsistencies, and time cost (Tcost) for
measuring the time each strategy-technique combination
has actually spent on checking all context changes from a
particular group. Note that in order to calculate the false
negative/positive rates, we need an oracle of all context
inconsistencies that should be reported, which has been
obtained in a way as our earlier controlled experiments.

With the above context data, strategy-technique com-
binations, and designed metrics, we measured the per-
formance of each of the 12 combinations for each of the
three groups, and compare them in Table 7. Note that
each measured time cost should not exceed 60 minutes
theoretically for checking each group of context changes, but
in practice even if the client stopped sending more changes,
the server might still need slightly more time for clearing
up remaining changes not processed yet due to specific low-
efficiency combinations. Therefore, some few time cost data
may slightly exceed 60 minutes.

Results. From Table 7, we make the following observa-
tions:

(1) The IMD scheduling strategy is undesirable be-
cause all constraint checking techniques combined with
IMD can be subject to low-quality inconsistency detec-
tion results. Consider the most low-efficiency constraint
checking technique ECC, although IMD+ECC produced
satisfactory detection results (RFN = 0% and RFP = 0%) for
the light workload, it suffered severe quality problems in
the detection results for the median and heavy workloads
(RFN = 94.4%, 98.7%, and RFP = 31.0%, 30.6%, respectively).
Regarding techniques Con-C, GAIN, and PCC, since their

efficiency is much higher than ECC, their combinations with
IMD produced satisfactory detection results (all are RFN =
0% and RFP = 0%) even for the median workload. However,
for the heavy workload, all the three combinations, namely,
IMD+Con-C, IMD+GAIN, and IMD+PCC, still suffered
different levels of quality problems in the detection results
(RFN = 97.5%, 85.2%, 52.6%, and RFP = 60.0%, 39.2%, 10.0%,
respectively). Therefore, we observe that when combined
with IMD, none of the four constraint checking techniques
can produce satisfactory results for all the three workloads.
We owe this inability to the IMD scheduling strategy. This
again justifies our motivation for a desirable scheduling
strategy like GEAS.

(2) The GEAS scheduling strategy greatly improves the
inconsistency detection results and detection efficiency.
For all cases formed by a specific constraint checking tech-
nique and a specific workload (i.e., each line in Table 7, to-
tally 12 cases except ECC+Heavy, which is discussed later),
we observe that with GEAS against IMD: inconsistency
detection results were all improved (all going for RFN = 0%
and RFP = 0%); detection efficiency data were also all im-
proved (up to about 1,300%); GEAS-opt always performed
better than GEAS-ori (e.g., 12.2–308.6% higher efficiency).
For the only exceptional case ECC+Heavy, because ECC
is too low-efficiency, even with GEAS-ori and GEAS-opt,
its inconsistency detection results were still unsatisfactory,
although with improvement of some extent (RFN: from
98.7%, to 97.6% and 96.7%; RFP: from 30.6%, to 75.7% and
64.0%). We note that when the number of reported context
inconsistencies is extremely small (less than 10% of the
oracle data) due to the low-efficiency ECC, the RFP values
could be misleading. Therefore, to better interpret the data,
we transform the two metrics into true positives. Then GEAS-
ori+ECC and GEAS-opt+ECC, as compared to IMD+ECC,
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increased the number of context inconsistencies that should
be reported (i.e., real context inconsistencies) from 147 to
280 and 387, respectively. That is, when checking context
changes with the most low-efficiency technique ECC, GEAS
can still help detect 90.5% and 163.3% more real context
inconsistencies.

(3) Low-efficiency constraint checking techniques,
when combined with GEAS, may gain boosted per-
formance even comparable to high-efficiency constraint
checking techniques combined with IMD. For example,
the most low-efficiency technique ECC, when combined
with the IMD scheduling strategy, cost all possible time
(61.82 minutes) but still missed 94.4% context inconsisten-
cies with 31.0% wrongly reported results for the median
workload. Nevertheless, when ECC is combined with the
GEAS-opt strategy, it realized the perfect result of both 0%
false negatives and 0% false positives, and at the same
time cost only 4.40 minutes. This trivial time cost is even
comparable to the combination of PCC (the most high-
efficiency technique) and IMD (2.57 minutes). This suggests
that the effectiveness of GEAS to low-efficiency constraint
checking techniques can be amazing, although it has general
effectiveness to all constraint checking techniques.

One may concern the possible delay GEAS has to take it
order to group context changes before checking them as a
whole. So we also measure and study such delay. First, we
measured the average batch sizes for the three workloads
(namely, light, median, and heavy), which are 4.0, 4.4,
and 4.8 for GEAS-ori, and 55.2, 14.4, and 14.1 for GEAS-
opt, respectively (meaning how many context changes in
one batch on average). Here we note that the average
batch sizes for GEAS-opt already include the numbers of
canceled context changes for delay-computation purposes
(their actual average batch sizes after cancellation are 2.8,
2.8, and 2.9). Then, we use the average intervals between
every two context changes in Table 6 to estimate the delays
(batch size × interval), which are 0.11 (GEAS-ori) and 1.46
(GEAS-opt) seconds for the light workload, 0.06 (GEAS-ori)
and 0.18 (GEAS-opt) seconds for the median workload, and
0.02 (GEAS-ori) and 0.07 (GEAS-opt) seconds for the heavy
workload. We can see that these delays are quite small. To
further evaluate whether they are acceptable to respective
workloads, we consider the average time periods required
for detecting the next context inconsistency, which are 4.59,
0.52, 0.31 seconds for the three workloads, respectively, from
Table 7. We observe that the delays are much smaller than
the time periods for all the three workloads, and thus we
believe that such delays are acceptable and worthwhile, con-
sidering that GEAS can bring along significant improvement
on the quality and efficiency of inconsistency detection.

Therefore, we conclude that GEAS is also effective for
practical context processing scenarios, by greatly improving
the quality of inconsistency detection results and reducing
the time costs.

5.5 Threat Analyses

One potential threat concerns the external validity of our
experiments and conclusions, since we selected one taxi
application as our subject. It is possible that the conclu-
sions made on experiments with this application may not

apply to other applications. Nevertheless, we have made
necessary efforts to alleviate this threat. First, the SmartCity
application and its accompanying consistency constraints
and taxi data were mostly used in existing work [6], [10],
[11], [12] on evaluating constraint checking techniques for
their efficiency and quality. This facilitates our comparisons
in the experiments for this work. Second, the consistency
constraints and taxi data are realistic and representative for
experiments, since the constraints cover all seven formula
types in the constraint language and the data volume is
huge (6.75 and 11.53 million context changes), greatly reduc-
ing the possibility of experimental bias due to special data.
Third, the consistency constraints and taxi data together
also incur different checking workloads for context inconsis-
tency detection (more than 100x difference in the checking
time), which are necessary for observing and comparing the
performance of different strategy-technique combinations,
as shown in our experiments. Fourth, to more compre-
hensively evaluate GEAS’s performance on the applica-
tion, constraints, and data, we conducted experiments in
both controlled experimentation (Sections 5.1–5.3) and case
study (Section 5.4) ways, validating GEAS’s effectiveness
in both controlled and practical environments. Therefore,
we believe that these efforts can help alleviate as much as
possible the potential threat to the external validity of our
experimental conclusions.

Note that some experimental observations (e.g., specific
comparison data) could be different for other applications.
We argue that this only affects the degree of efficiency gains
by GEAS over the immediate and batch-based scheduling
strategies, but our experimental conclusions about GEAS’s
superiority over these strategies still hold, since we have
formally proved GEAS’s soundness by three theorems for
guaranteeing its detection quality. Even if GEAS has its
adaptive groups always being reduced to size one (almost
impossible in practice), it conceptually becomes the imme-
diate scheduling strategy. Therefore, GEAS’s efficiency gain
is almost always anticipated, considering its own marginal
overhead.

Besides, to avoid possible implementation bias from
affecting our experimental conclusions, we implemented
or re-implemented all constraint checking techniques and
scheduling strategies under study. We made them share the
same data structures and file operation interfaces, rather
than directly using their original implementations [6], [10],
[11], [12]. We compared these implementations to their
original ones for correctness with the help from the original
authors. Moreover, other than these implementation efforts,
we also formally specified our problem (Section 2.5) and
proved its correctness by three theorems (Sections 3.2, 3.4,
and 4.3). By doing so, we try our best towards the theoreti-
cally reliability of our experimental conclusions on GEAS’s
efficiency gain, detection quality, and generality.

Finally, we release the implementation1 of our GEAS-ori
and GEAS-opt at GitHub to facilitate readers to replicate our
experiments. In addition, we also release a stand-alone tool2

for deriving s-conditions for consistency constraints, so that
readers can try our GEAS on other applications.

1. https://github.com/GenericAdaptiveScheduling/GEAS.
2. https://github.com/GenericAdaptiveScheduling/GenTool.
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6 DISCUSSIONS

In this section, we discuss some issues regarding GEAS’s
usage in practical application scenarios.

Which GEAS version to use. According to our evalua-
tion results, we prefer GEAS-opt to GEAS-ori for a higher
efficiency in context inconsistency detection. Nevertheless,
there is one minor concern in making the selection for
specific application scenarios. As aforementioned, GEAS-
opt requires that target application scenarios have context
addition and deletion changes only, while GEAS-ori does
not have this restriction. Therefore, for an application sce-
nario that has all three change types (i.e., addition, deletion,
and update), we recommend either using GEAS-ori or using
GEAS-opt with a special treatment to its received context
update changes. The treatment would need to split each
update change into one deletion change and one addition
change, with a virtual lock on them. The virtual lock would
require that: (1) the two changes should always be within
the same batch, and (2) they are not allowed for cancellation.
By doing so, we can extend the usage of GEAS-opt to
application scenarios that also have context update changes,
but this would incur some engineering effort, which we
leave as future extension. Still, we made a preliminary
analysis of application scenarios studied by major context
inconsistency detection [6], [7], [8], [10], [11], [12], [38] and
resolution work [19], [38], [39], [40], [41], [42], [43], [44], [45]
to study their characteristics on using different types of con-
text changes. We obtained a total of 15 unique application
scenarios and found that most of them (ten) are directly
applicable to GEAS-opt (i.e., no update change) and the
remaining ones (five) can be easily adapted by the above
treatment (i.e., transforming update changes into deletion
and addition changes). Thus, we believe that our GEAS can
apply to a wide range of application scenarios and the more
efficient version GEAS-opt can be directly applicable in most
cases.

Priorities of consistency constraints. GEAS has as-
sumed that all consistency constraints are equally impor-
tant and should report any of their violations. Under this
assumption, GEAS tries to speed up the scheduling of con-
straint checking and protect the quality of inconsistency de-
tection results. In practice, some constraints can have higher
priorities than others in the sense that their violations must
be reported and reported as soon as possible. For the former,
such constraints work like “hard constraints” [6], which
should not be violated in any case, and while for the latter,
the constraints can be checked at later time when those of
higher priorities have completed their checkings. GEAS can
be configured to support such prioritized scheduling since
it works at another level of controlling.

Handling of detection results. GEAS is responsible
for supporting constraint checking techniques to more ef-
ficiently detect context inconsistencies. Regarding detected
inconsistencies, there are various strategies for handling.
Normally, each detected context inconsistency should be
handled since it indicates a violation to a specific consis-
tency constraint, which specifies some necessary property
that should hold. Otherwise, the detected inconsistency
may possibly lead to more severe consequences. This is
supported by the study on the correlation between consis-

tency error and application failure (67.1% from the former
correlates to the latter, and 86.5% otherwise) [46]. Still,
one may choose strategies of different emergency levels to
handle detected inconsistencies, depending on the nature of
consistency constraints or applications themselves [47], e.g.,
ignoring or tolerating inconsistencies (when the concerned
constraint is soft [6]), or resolving inconsistencies by fixing
concerned contexts [39], [40], [41], [42], [43], [44], [45]. In
our SmartCity application, we detected quite a few context
inconsistencies. We made a further study into these incon-
sistencies, and found that: (1) some are due to the sensitivity
of some consistency constraints that restrict the calculation
of traffic conditions to the major urban part of the concerned
city and identify those contexts that are beyond this scope
and thus can be easily removed from the calculation; (2)
most are due to some consistency constraints from the
application that monitor context changes on selected hot
areas in an asynchronous way [7], whose detected inconsis-
tencies are transient and can thus be tolerated within a short
period of time as they will disappear automatically; (3) the
remaining ones are real problems with the taxi data (e.g.,
localization errors due to GPS noise or lost signal), whose
fixing needs application-specific resolution techniques. For
example, consider one of the application’s consistency con-
straints “all tracked taxis should be within the considered
scope of the city”, i.e., ∀ v ∈ C ((inScope(v))). When it
is violated, the inconsistency detection may report a link
like (violated, {(v, t1)}). It indicates that a taxi with tracking
record t1 is now out of the considered scope of the city.
Following the preceding first finding, the record t1 can be
removed from later use by the application. Consider another
more complex constraint “all taxis should not drive beyond
the maximal speed possible in the city (two consecutive
tracking records for any taxi should not span across a large
distance)”, i.e., ∀ v1 ∈ C1 (∀ v2 ∈ C2 (sameTaxi(v1, v2)
implies notLargeDist(v1, v2))). When it is violated, the in-
consistency detection may report a link like (violated, {(v1,
t1), (v2, t2)}). It indicates that a taxi’s two consecutive
tracking records (t1 and t2, collected in a very short interval)
induce a significantly large distance (more than the maximal
possible speed). This suggests possible defects in the taxi’s
GPS data, which should be fixed. Following the preceding
third finding, the inconsistency can be resolved by looking
up earlier records before t1 and later records after t2 for this
taxi, deciding which of t1 and t2 are more likely to be faulty,
and then replacing it with an interpolated point derived
from this series of records, or by other application-specific
resolution techniques. We shall give a detailed treatment of
such resolution techniques in the next section.

7 RELATED WORK

This work focuses on quality assurance for adaptive appli-
cations. As mentioned earlier in Section 1, such applications
increasingly rely on their interactions with environments to
decide when and how to adapt to environmental changes
for delivering smart services. Typical examples of these ap-
plications include early ConChat [48], ActiveCampus [49],
3dID [50], Locale [51], and latest self-driving vehicles [1],
[2], [3]. The quality assurance for such applications de-
pends much on the whole interaction loop between an
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application and its environment, which concerns how to
obtain high-quality raw sensory data, how to guarantee
the consistency of application contexts based on other raw
data (e.g., sensory data), how to identify potential context-
related adaptation defects in applications, as well as how to
guarantee the consistency of general software artifacts in the
application development. In the following, we present and
discuss representative related work along these four lines in
recent years.

Obtaining high-quality raw sensory data. Raw sensory
data can be similar to application contexts from the point
of view of their structures, but the former are typically
processed by data engineering techniques. These techniques
focus mainly on cleansing noisy data by pre-specified fil-
tering thresholds or adaptive tuning, such that the cleansed
data can meet certain quality requirements. For example, the
RFID technology [27] is being widely used for object iden-
tification and tracking, but it often suffers from missing or
cross read problems [28], [29], [30], [31], which refer to an ob-
ject located in the RFID sensing range being undetected due
to metal material or human body absorption, or an object
being misread due to misconfigured voltage or misplaced
antennas. Such problems are often referred to as RFID data
anomalies [29], and can be removed by various techniques
based on filtering [28], fuzzy operators [52], or sequence-
based rules [29]. They may also be corrected by measuring
collected data’s probabilities of being correct based on in-
tegrated constraints and if necessary replacing them with
new versions based on entropy maximization [53]. Some
techniques have also been integrated into commercial ETL
products [54], [55] for automated RFID data cleansing. How-
ever, one major limitation of these techniques is that they
focus mainly on setting up or tuning filtering thresholds
that concern characteristics of certain types of sensory data,
and thus are unaware of application requirements on these
data (e.g., assuring the consistency among several different
types of sensory data and alleviating the impact of cleansing
sensory data on application behavior).

Guaranteeing the consistency of application contexts.
Application contexts can be derived from sensory data (e.g.,
location and temperature data), collected from user or appli-
cation profiling data (e.g., user calendar and executed task
information), or learned from user behavior or real-world
events (e.g., user mood and activity). Due to their multi-
source and various-processing nature, application contexts
can be inaccurate, incomplete, or even conflicting with each
other, known as context inconsistency. As a result of such
complexity, threshold or tuning based data engineering
techniques may not suffice to address. This calls for efforts
of comprehensive context management techniques.

Existing context inconsistency detection techniques can
be classified into two approaches. One approach uses dedi-
cated rules for specifying inconsistency scenarios an appli-
cation cannot tolerate, and then detects the occurrences of
such scenarios. For example, Bu et al. [41], [56] proposed
an ontology-based context model, from which rules are
specified for describing inconsistency scenarios so as to
facilitate their detection. Xu et al. [38] proposed semantic
matching and inconsistency triggers to specify inconsistency
scenarios, and integrating them into a middleware infras-
tructure, Cabot, for supporting inconsistency-free context-

aware computing. Due to the difficulty of enumerating
almost infinite inconsistency scenarios, the other approach
specifies what desirable scenarios are in term of consistency
constraints, and judges any violation of such specification
as an occurrence of context inconsistency. For example,
existing work proposed various techniques to detect context
inconsistencies and identify problematic contexts based on
the notion of consistency constraint, by means of full con-
straint checking (ECC, integrated in the xlinkit tool) [8], in-
cremental constraint checking (PCC) [6], CPU-parallel con-
straint checking (Con-C) [10], and GPU-parallel constraint
checking (GAIN) [11]. We observe an increasing trend of
recognizing the necessity of efficiency detection for context
inconsistency, due to the fundamental difference between
application contexts, which are subject to frequent changes,
and other traditional software artifacts, which are usually
static or change rarely or slowly. Besides, almost all existing
work on context inconsistency detection focuses on speed-
ing up constraint checking, except our work (its preliminary
version [12] and extended version in this article) is dedicated
for reducing the scheduling, i.e., removing unnecessary
constraint checking. Regarding scheduling, there are also
some pieces of related work in other fields, e.g., scheduling
abstraction refinement for verifying sequential consistency
for concurrent programs [57], scheduling towards maximal
throughput for network applications [58], [59], scheduling
tasks for parallel and distributed heterogeneous computing
systems [60], [61], [62], and scheduling predicate evaluations
in distributed environments upon coming events [63], [64].
These pieces of work do not focus on reducing unnecessary
tasks for scheduling so as to improve the efficiency, different
from the focus of our work in this article.

Detected context inconsistencies can be resolved by iden-
tifying and processing the contexts that are responsible for
these inconsistencies, which are known as inconsistent con-
texts. Existing context inconsistency resolution techniques
can also be classified into two approaches. One approach
proposes resolving context inconsistencies from the con-
text perspective only, i.e., processing inconsistent contexts
as if they were pure data, without considering any side
effect of their processing to applications that use the con-
texts. For example, Ranganathan et al. [39] and Insuk et
al. [40] proposed following human preferences to identify
and process inconsistent contexts. This technique is simple
and easy to implement, but may not apply to dynamic
scenarios whose requirements are subject to change. Bu et
al. [41] suggested considering all contexts relating to any
context inconsistency as inconsistent ones, and removing
all of them except the latest ones, assuming that the latest
contexts have the most reliability. This technique is based
on heuristics, which works efficiently but may remove more
than necessary contexts, leading to context losses. Chomicki
et al. [42] considered one randomly selected event/action
to be responsible for removal so as to resolve the conflicts
among multiple events/actions. This technique can directly
apply to the context inconsistency resolution problem. These
discussed techniques would accidentally change available
contexts to applications, thus affecting application behavior
unexpectedly. The other approach explicitly considers this
problem and tries to alleviate its impact. For example, Xu
et al. [45] considered those contexts that participate more
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frequently in inconsistencies to be more likely inconsistent.
One advantage of this technique is that it can minimize
the number of contexts that have to be removed, indirectly
alleviating potential side effect to applications that run with
these contexts. Xu et al. [43], [44] later proposed explicitly
quantifying the side effect that can be caused by any context-
processing step, and selecting the resolution strategy that
minimizes the summation of all possible side effects caused
by the steps in this strategy. These techniques attempt to
alleviate possible side effect of context inconsistency resolu-
tion to applications. However, since their main focus is on
inconsistency resolution, these techniques still leave a large
room for applications to possibly suffer from other prob-
lems (e.g., adaptation defects) due to the lack of sufficient
consideration of processing various types of contexts.

Identifying context-related adaptation defects. Con-
texts can be of various types (e.g., sensory data, user pro-
files, or derived information) and of different qualities (e.g.,
inconsistent or resolved). This complexity makes developers
easily fail to sufficiently consider proper logics of processing
the contexts and delivering smart services in a context-
aware way. Thus incurred problems are often referred to as
context-related adaptation defects. Some pieces of work focus
on verifying or monitoring general properties identified in
context-aware adaptive applications, e.g., predictability [4],
[26], [32], [39], [40], [42], [65], stability [26], [32], [51], [65],
reachability and liveness [32], and consistency [66]. Their
violation indicates the presence of adaptation defect, which
can drive an application to behave abnormally, e.g., appli-
cation behavior no longer predictable upon any situation,
application no longer stable after any adaptation, appli-
cation state no longer reachable or adaptation no longer
triggerable, and application’s perception to its environment
no longer consistent with its actual environmental con-
ditions [23]. Other pieces of work assume the availabil-
ity of specific assertions for judging whether a context-
aware adaptive application has gone into an abnormal state
(e.g., crashing, taking illegal operations, and GUI freezing),
and use model checking or testing techniques to check
the satisfiability of such assertions. For example, Yang et
al. [67], [68], [69] proposed combining path conditions with
environmental/uncertainty constraints and solving them
by model checking for counterexamples that violate the
given assertions. The generated counterexamples then give
possible scenarios where abnormal adaptation can occur.
Wang et al. [70], Lu et al. [71], and Lai et al. [72] tried to
improve the testing adequacy for context-aware adaptive
applications by either strengthening testing coverage or
introducing new test coverage criteria. These pieces of work
aim for identifying defects in an application’s adaptation
logics in processing contexts of various types and qualities,
complementing existing research efforts on context incon-
sistency detection and resolution, thus assuring quality for
adaptive applications from both inside software and outside
software.

Guaranteeing the consistency of general software ar-
tifacts. The preceding three lines of related work all focus
on the runtime of adaptive applications, i.e., after the appli-
cations are deployed. This concerns one important phase of
the whole software development. In fact, the software engi-
neering community has extensively studied the consistency

management issue for general software artifacts generated
in the whole software development process, and the pro-
posed techniques share some degree of similarity. For exam-
ple, various techniques have been proposed for managing
the consistency of many traditional software artifacts, e.g.,
XML documents [8], [9], [14], UML models [15], [16], [17],
data structures [18], workflows [19], and distributed source
code [20]. One feature of these artifacts is that they are
manually made or indirectly affected by human operations,
thus subject to various inconsistency issues.

However, as mentioned earlier, these software artifacts
are typically static or change rarely or slowly, and thus these
techniques focus mainly on the effectiveness of consistency
management. Context, the artifact studied in this article,
is featured by its dynamics and imperfectness, and thus
requires for a special treatment on the efficiency of its
consistency management (e.g., PCC [6], Con-C [10], and
GAIN [11]). Besides, context consistency management has to
address an additional challenge that traditional consistency
management typically overlooks, i.e., deciding the proper
boundaries for deciding when to schedule constraint check-
ing for inconsistencies, since contexts are typically formed
by infinite streams. If the boundaries are decided wrongly,
reported inconsistencies can be meaningless or misleading.

In fact, this issue has also be partially observed in the
consistency management of traditional software artifacts,
e.g., editing scripts from human users. If constraint checking
is scheduled at wrong time points, incorrectly grouped edit-
ing scripts can incur numerous false warning [73], unexpect-
edly frustrating users. However, this issue has never become
a major focus in the consistency management of traditional
software artifacts, but for context inconsistency detection, it
can be critical if not addressed properly. For example, Xu
et al. confirmed common occurrences of unstable context
inconsistencies (one type of false warning) in context incon-
sistency detection, and proposed proactively suppressing
them by deriving instability conditions [7]. Later, Xi et al.
proposed pattern learning and dynamic matching in con-
text streams to adaptively suppress inconsistency hazards
(another type of false warning) [74].

The work studied in this article takes one step further by
exploiting the implicit relationship between improving the
efficiency for context inconsistency detection and suppress-
ing undesirable results (e.g., false warning) in the detection.
Our GEAS transforms the isolation of normal inconsisten-
cies from undesirable results into the identification of critical
time points when scheduling constraint checking can poten-
tially cause missed inconsistencies, and then exploits such
information to decide when the scheduling can or cannot be
skipped (i.e., grouping concerned contexts or not), so as to
improve the efficiency for context inconsistency detection.
As we show in the evaluation, the efficiency improvement
can be significant.

8 CONCLUSION

In this article, we study the context inconsistency detection
problem, whose major concern lies on its detection efficiency
and quality. Existing research efforts either have limited
the detection efficiency since they commonly assume the
use of the immediate scheduling strategy for combination,
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or negatively affected the detection quality when trying to
combine with the batch-based scheduling strategy.

To address this efficiency-quality dilemma, we have
proposed a novel scheduling strategy GEAS with carefully
designed mechanisms to improve the detection efficiency
with quality guarantee. We design GEAS with two in-
sights. First, GEAS uses s-conditions to break latent inter-
ferences between collected context changes and group them
adaptively with batches of dynamic sizes. This mechanism
improves the detection efficiency without any missing of
inconsistency results. Second, GEAS additionally uses c-
conditions to remove impact-opposite context changes from
formed batches. This mechanism optimizes the workload by
conducting safe change removal and thus further improves
the detection efficiency. We have formally proved the cor-
rectness of these two mechanisms and successfully applied
them to existing four constraint checking techniques, show-
ing GEAS’s generality. The experimental evaluation shows
that GEAS can largely improve the efficiency for context
inconsistency detection by 38.8%–566.7% (or 1.4x–6.7x) for
GEAS-ori and 169.2%–2,755.9% (or 2.7x–28.6x) for GEAS-opt
without any missing of inconsistency results. When applied
to a practical application scenario, GEAS exhibited both
significant efficiency improvement and unique superiority
over other scheduling strategies on the quality of inconsis-
tency detection results, no matter which constraint checking
technique is combined with.

Future directions. Our GEAS still has some limitations
and deserves further research along this line. First, our
further study shows that although GEAS have greatly sup-
pressed unnecessary scheduling of constraint checking (e.g.,
GEAS-ori: by 72.0%, GEAS-opt: by 92.7%), we still observed
some scheduling being free of any context inconsistency
result, i.e., potential room for further improvement. Our
s-conditions statically derive those time points when im-
proper scheduling constraint checking can miss inconsis-
tency results, and are conservative due to its lack of dynamic
information. Our c-conditions partially add such dynamic
information by checking whether certain change pairs can
cause opposite impacts in constraint checking, but its check-
ing is for changes associated with the same contexts only.
Additional checking for changes across different contexts
can be possible but would be much more complicated, and
this could be a direction that deserves efforts for further
efficiency improvement of context inconsistency detection.

Second, we studied the application of GEAS to central-
ized massive data processing for context-aware adaptive
applications. In fact, GEAS can also work for resource-
restricted computing devices, e.g., mobile phones or wire-
less sensor networks where computations are pervasive
but environmental data are dynamic and noisy. How-
ever, GEAS’s application to distributed scenarios, although
promising, deserves further research about its feasibil-
ity. Our previous work [75] explored the possibility of
decentralized constraint checking, but was found to be
communication-intensive. Therefore, it deserves investigat-
ing whether GEAS-alike techniques can help suppress un-
necessary communications across distributed hosts, but still
maintain complete inconsistency detection results.

Third, now context inconsistency detection has various
scheduling strategies (e.g., IMD, BAT, GEAS-ori, and GEAS-

opt) and constraint checking techniques (e.g., ECC, Con-
C, GAIN, and PCC). Application developers and users can
have a variety of combinations to choose from. Then one
natural question arises: how should one choose the most
suitable one from all possible combinations, considering
that these combinations have various efficiency levels and
space/time requirements? A further question is: since an
application scenario can be subject to change in terms of
checking workload, e.g., the taxi scenario has both rush
hours with heavy traffic and silent midnights without
much traffic, then how can one switch from one strategy-
technique combination to another without affecting incon-
sistency detection results by continually, non-stopping con-
straint checking? Such questions deserve further investiga-
tions when one plans to deploy various strategy-technique
combinations to practical application scenarios.
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