
期末复习
!"#

why@nju.edu.cn

!"#$ %&'()*+,()$-



回顾：这个学期学了些什么？有陷阱？
• 数据类型

• 整型：int，short，char，bool
• 浮点型：float，double，long double
• 指针类型：*，&
• 自定义类型：struct，union，enum

• 表达式语句
• 操作符：优先级

• 流程控制
• 条件分支：if，switch-case
• 循环：for，while，do-while
• 跳转：continue，break，goto

• 函数调用：迭代和递归
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数据类型
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整型类型
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类型 字节数 位数 取值范围 格式匹配符

char 1 8 −27~ 27− 1 %c, %d

signed char 1 8 −27~ 27− 1 %c, %d

unsigned char 1 8 0 ~ 28− 1 %c, %d

signed short int 2 16 −215~ 215− 1 %hd

unsigned short int 2 16 0 ~ 216− 1 %hu

signed int 4 32 −231~ 231− 1 %d

unsigned int 4 32 0 ~ 232− 1 %u

signed long int 4 32 −231~ 231− 1 %ld

unsigned long int 4 32 0 ~ 232− 1 %lu

signed long long int 8 64 −263~ 263− 1 %lld

unsigned long long int 8 64 0 ~ 264− 1 %llu

类型所占机器位数与特定编译器平台相关
sizeof (静态运算符，编译时决定，不要在括号内做运算)

short<=int<=long



stdint.h
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https://en.cppreference.com/w/c/types/integer


Undefined Behavior: 警惕整数溢出

表达式 值

UINT_MAX+1 0

INT_MAX+1; LONG_MAX+1 undefined

char c = CHAR_MAX; c++; varies (???)

1 << -1 undefined

1 << 0 1

1 << 31 undefined

1 << 32 undefined

1 / 0 undefined

INT_MAX % -1 undefined
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• W. Dietz, et al. Understanding integer overflow in C/C++. 
In Proceedings of ICSE, 2012.



浮点类型
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𝑥 = (−1)!×(1. 𝐹)×2"#$

类型 字节数 位数 规范 取值范围 输入符 输出符

float 4 32 S1|E8|F23 ±1.2𝐸 − 38~ ± 3.4𝐸 + 38 %f %f, %e

double 8 64 S1|E11|F52 ±2.2𝐸 − 308~ ± 1.8𝐸 + 308 %lf %f, %e

long double 10/12/16 80/96/128
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浮点运算的精度
• float：大约6-7位有效数字
• double：大约15-16位有效数字
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Floating-point tolerances revisited – realtimecollisiondetection.net – the blog

https://realtimecollisiondetection.net/blog/?p=89


指针类型
• “A pointer is a variable that contains the address of a variable.”

• 一个保存内存地址的变量，代表指向某个具体的内存地址
• int i = 5;
• int* p;
• p = &i;
“p是指向i的指针” 
à “p存储了i的内存地址”

• 指针使用
• *p = 2 等价于 i = 2
• *p：可以看作i的别名，代表使用*运算符访问存储在指向对象中的内容

• 指针变量的值，是具有实际值的变量的地址，而普通变量的值是实际值
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5
0xFFFFFFF4

0xFFFFFFF4

p

i



指针类型
• 可以作为参数

• 数组作为函数参数
• void func(int (*mat)[10])
• void func(int mat[][10])

• 可以作为返回值

• 可以做算术操作，也可以类似数组做下标运算[ ]
• int a[10], *p;
• p+1：加其指向类型的sizeof大小

• 如果指针指向的不是连续内存，没有意义
• 一般和数组关系密切
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多维数组与指针
• int matrix[3][10];

• matrix
• matrix+1
• *(matrix +1)
• *(matrix+1)+5
• *(*(matrix+1)+5)
• p = matrix， p = matrix[1] p = matrix[0][0]
• p = &matrix， p = &matrix[1] p = &matrix[0][0]
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string.h
• 常见的字符串函数

• 不受限制的字符串函数
• size_t strlen (char const *string);
• char *strcpy (char *dst, char const *src);
• char *strcat (char *dst, char const *src);
• int strcmp (char const *s1, char const *s2);

• 长度受限的字符串函数
• char *strncpy (char *dst, char const *src, size_t len);
• char *strncat (char *dst, char const *src, size_t len);
• int strncmp (char const *s1, char const *s2, size_t len);
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string.h
• 常见的字符串函数

• 查找字符或子串函数
• char *strchr(char const *str, int ch);
• char *strrchr(char const *str, int ch);
• char *strpbrk(char const *str, char const *group);
• char *strstr(char const *s1, char const *s2);

• 查找计数
• size_t *strspn(char const *str, char const *group);
• size_t *strcspn(char const *str, char const *group);

• 查找标记
• char *strtok(char *str, char const *sep);

• strtok.c
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http://why.ink:8080/static/code/CPL2022/08/strtok.c
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qsort和bsearch
• https://en.cppreference.com/w/c/algorithm

• Pointer type matters！
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https://en.cppreference.com/w/c/algorithm


qsort和bsearch
• 关于 qsort 与 bsearch 的用法，可以参考：

• 课堂录屏
• https://www.bilibili.com/video/BV1jrUYB5EC9?spm_id_from=333.7
88.videopod.sections&vd_source=49dd5159129c5cf96b663a53b83768
bd

• https://www.bilibili.com/video/BV1mu2xBNEpq/?spm_id_from=333.
1387.collection.video_card.click&vd_source=49dd5159129c5cf96b
663a53b83768bd

• 飞书文档
• https://njusecourse.feishu.cn/wiki/ZlxPwL2W2i1Xuek2CXgcxau3nL
d?from=from_copylink

• 务必熟练掌握！
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https://www.bilibili.com/video/BV1jrUYB5EC9?spm_id_from=333.788.videopod.sections&vd_source=49dd5159129c5cf96b663a53b83768bd
https://www.bilibili.com/video/BV1mu2xBNEpq/?spm_id_from=333.1387.collection.video_card.click&vd_source=49dd5159129c5cf96b663a53b83768bd
https://njusecourse.feishu.cn/wiki/ZlxPwL2W2i1Xuek2CXgcxau3nLd?from=from_copylink


指针和const
• 指针是const

• int * const p = &a;
• *p = 100;//ok
• p = &b; //ERROR
• p++; //ERROR

• 指针所指是const
• const int *p = &a;
• *p = 100; //ERROR
• a = 100; //ok
• p = &b; //ok

• 数组名称天然是const，不可改变其值，常量地址
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表示不能通过该指针修改此变量
（并不能使变量变成const）



指针指向动态分配内存
• 回顾VLA：可变长数组int array[n]

• 不推荐

• C函数库提供malloc和free，用于执行动态内存的分配与释放
• void *malloc(size_t _Size);

• typedef unsigned long/int size_t

• void free(void *pointer);

• int *p = NULL;
• p = (int *)malloc(n*sizeof(int));
• free(p);
• 警惕：分配失败返回NULL，p不可随意移动
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自定义类型：struct
• 结构体

• 可能具有不同类型的值（成员）的集合
• 初始化

• {1, “Allen”, 98.5};
• {.name = “Su”, .score = 88.0};
• {.name = “Su”, 88.0, .id = 2};

• 结构体成员作用域仅在当前结构体，具有独立的name space
• 多结构体成员重名，互不冲突

• 成员访问通过“.”操作访问
• stu1.name
• stu2.score
• &stu1.name
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struct record {
int id;
char name[N];
double score;

};
struct record stu1, stu2;

typedef struct {
int num;
long score;
char id;

} record2;
record2 stu2



结构类型作为参数和返回值
• 结构体变量赋值

• struct record stu1, stu2;
• stu1 = stu2;
• 结构变量的名字不是一个地址

• rectangle.c
• void Print(struct record stu);

• 值传递：结构体会复制

• void Print(struct record * stu);//stu->x, (*stu).x
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“If a larger structure is to be passed to a function, it is generally
more efficient to pass a pointer than to copy the whole structure.”

——K & R (p.131)

http://why.ink:8080/static/code/CPL2022/10/rectangle.c
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typedef struct {
int a;
short b[2];

} EX2;

typedef struct EX{
int a;
char b[3];
EX2 c;
struct EX *d;

} EX;

EX x;
EX *px = &x;

100 H i \0 5 -1 25 &y
a b

c
a b d

&x
px

EX x = {100, {'H', 'i', '\0'}, {5, {-1, 25}}, 0};

(*px)

EX y;
x.d = &y;

a b
c
a b d

y (*x.d)

x

*px->c.b



struct自引用
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struct SELF{
int a;
struct SELF b;
float c;

};

struct SELF{
int a;
struct SELF *b;
float c;

};

typedef struct {
int a;
SELF *b;
float c;

} SELF;

typedef struct SELF_TAG {
int a;
struct SELF_TAG *b;
float c;

} SELF;



Linked List
• 链表：内存非连续的线性结构

• 单链表节点
• 存储有价值的数据，与指向下一个链表节点的指针
• struct node {int data; struct node *next;};

• 双向链表
• struct node {

struct node * prev; 
int data; 
struct node *next;

};
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data data

data data NULLNULL



链表的节点插入和删除
• 新链表节点的插入

• 已有链表节点的删除
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data data

data

data data data



单向链表和双向链表
• 单向链表

• struct node {int data; struct node *next;};

• 双向链表
• struct node {

struct node * prev; 
int data; 
struct node *next;

};
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data data NULL

data data NULLNULL



union
• 和struct的不同点：

• 成员是否共用同样的内存空间
• struct-union.c
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union{int i; double d};

struct{int i; double d};

i

d

i

d

http://why.ink:8080/static/code/CPL2022/10/struct-union.c


表达式语句
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优先级
• C Operator Precedence - cppreference.com

• int *p, q;
• *p++;
• a & b != 0

• a << 4 + x
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https://en.cppreference.com/w/c/language/operator_precedence


优先级
• C Operator Precedence - cppreference.com

• &stu1.name
• *stu1.name

• int *p[5];
• int *(p[5]);
• int (*p)[5];

• int (*f)(int);
• int *f(int);
• *f();
• (*f)();
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https://en.cppreference.com/w/c/language/operator_precedence


流程控制
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if
• 警惕悬挂的else

• else总是匹配前面最近的if
• 无大括号隔开

• 运算符
• 关系运算符：<, >, <=, >=（优先级低于算术运算符）

• i > j > k
• i + j < j * k 

• 判等运算符：==, !=（优先级低于关系运算符）
• i < j == j < k 

• 逻辑运算符：&&(与), ||(或), !(非)
• (i != 0) && (j / i > 0)
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if(…) {
…

}
else {

…
}

注意逻辑运算符与位运算的区别
• & (与), | (或), ~ (非)
• ^ (异或)
• << (左移位), >> (右移位)



switch-case
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switch (expression)
{
case /* constant-expression */:

/* code */
break;

case /* constant-expression */:
/* code */
break;

default:
break;

}



For循环
• Given a set A of integers, to compute their minimum.
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循环开始前的准备 循环结束条件 每轮循环的最后
一个执行
惯用法i++



while循环

• “当”
• 当表达式条件满足时，执行循环体内语句
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while (表达式){
语句

}



do-while循环

• 进入循环时不做检查，执行完一轮循环后，检查条
件是否满足，满足则进入下一轮，否则结束循环

• “一直做，直到表达式不满足了”
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do{
语句

}while (表达式);



• while(1){……}

• break
• 跳出最近的循环

• continue
• 跳出当前这一次循环
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函数定义与使用
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int is_Prime( int num ){
……
return res;

}
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int is_prime = is_Prime( i );
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函数声明
• 在定义前需要使用函数时，提前写上函数声明

• 在调用一个函数之前，必须对其进行声明或定义
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int is_Prime( int num ){
……
return res;

}

int is_Prime( int num );

int is_Prime( int );

int is_Prime();



函数运行细节
• 利用堆栈实现函数的调用与返回

• Programs run in memory (内存; 記憶體).
• Memory = Stack (栈区) + Heap (堆区) + ⋯
• Each function call has its own stack frame (栈帧).
• Stack grows/shrinks with function calls and returns.

• Visualization of Function Calls @ C Tutor
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https://pythontutor.com/c.html


还有一些啰啰嗦嗦的故事
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The UNIX Hater’s Handbook (and Beyond)
• 写于1994年

• Simson Garfinkel 的主页有电子版
• 说有道理也有道理说没道理也没道理

• 至少指出了 UNIX 的一些缺陷
• user friendly
• 命令行/系统工具的缺陷
• 手册的冗长

• 但今天 UNIX/Linux 已经成熟多了！
• man
• tldr
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https://web.mit.edu/~simsong/www/ugh.pdf


The Community Way

• 从GitHub获取代码
• 传统工具链 + “现代”编程体验

• 有的时候网络不太靠谱
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!"#$ (%&%')()*+,-!"./0123456./
"78-9:;<=>?@A9:BCDEFGHIJKLM-
NOP

git clone -b 2024 git@github.com:NJU-ProjectN/ics-pa.git ics2024
git clone https://github.com/NJU-ProjectN/ics-workbench

https://git.nju.edu.cn/



• 无所不能的代码聚集地
• 有整个计算机系统世界的代码

• 硬件、操作系统、分布式系统、库函数、应用程序……

• 学习各种技术的最佳平台
• 海量的文档、学习资料、博客（新世界的大门）

• 提供友好的搜索（例子：awesome C）
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The Community Way (cont’d)

GitHub is a development platform inspired by the way you work. 
From open source to business, you can host and review code, 
manage projects, and build software alongside 50 million 
developers. 



学习Git？

• RTFM?STFW！
• 百度：得到一堆不太靠谱的教程

• 大家已经见识过开源社区的力量了
• A Visual Git Reference

• 英文、中文、日文……

• 好的文档是存在的
• 还记得 tldr 吗？
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QRST(UVJWXY=Z[\= =

git clone -b 2024 https://github.com/NJU-ProjectN/ics-pa ics2024

https://marklodato.github.io/visual-git-guide/index-en.html


A Visual Git Reference
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a.c
b.c
……

a.c
b.c
……

Git
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v1 v2 v3 v4

当前目录
working directory

git add

v5

git commit

临时快照
stage



Git：分布式版本控制系统
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v1 v2 v3 v4

v1 v2 v3 v4 v5

v0



一些Comments
• 有趣的“--”

• UNIX 的设计缺陷 (UGH 中点名批评)
• 虽然是编程语言，但 Shell 更贴近自然语言

• 也有很多 corner cases
• 如果有一个文件叫“-rf”……怎么删除它？？？
• best practice: 文件名不以“-” 开头、不含空格/符号……

• 体验 Git
• 创建一个新的 repo，自由探索

• 为什么“预计完成时间 XX 小时”是骗人的？
• 预计完成时间是假设你在大一开始就用 Git 的

• Visualizing Git Concepts with D3
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http://onlywei.github.io/explain-git-with-d3


Visualizing Git Concepts with D3
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http://onlywei.github.io/explain-git-with-d3


Visualizing Git Concepts with D3
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http://onlywei.github.io/explain-git-with-d3


一些Comments (cont’d)
• 我们使用了“白名单”.gitignore文件

• 只在Git repo里管理.c，.h和Makefile
• 基本原则：一切生成的文件都不放在Git仓库中

• 为什么ls看不到这个文件？
• 怎么还有一个.git
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* # $%&'()
!*/ # *+,-
!*.c # .c
!*.h # ...
!Makefile*
!.gitignore

a.c
b.c
temp

……

v4

当前目录
working directory

v5

git commit

git add



回顾一下
• 在IDE里，为什么按一个键，就能够编译运行？

• 编译、链接
• .c → 预编译 → .i → 编译 → .s → 汇编 → .o → 链接 → a.out

• 加载执行
• ./a.out

• 背后是通过调用命令行工具完成的
• RTFM： man gcc; gcc –help; tldr gcc

• 控制行为的三个选项：-E，-S，-c
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IDE的一个键到底发生了什么？
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.c .i .s .o .out
./0 /0 1/ 23



从源代码到可执行文件

64

.c .i .s .o .out
./0 /0 1/ 23

45 46 47



编写大型程序
• 把程序划分成多个文件

• 头文件
• 一般包括宏定义，变量声明，函
数原型

• 惯例扩展名为.h
• 全局变量：static, extern的区别

• 源文件
• 每个源文件包含程序的部分内容，
主要是函数定义和变量定义

• 某个源文件必须包含名为main的
函数，作为程序的起始点
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构建多文件程序
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main

foo.o main.o

foo.c foo.h main.c



关于debug的一点福利
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开始调试之前
• 摆正心态 (编程哲♂学)

机器永远是对的

未测代码永远是错的
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]^_ crash `=abcd]ef`=g_ HIT BAD TRAP `=
hij_kHlmn

koAh]1pq bug -rs=tt bug uvwxy



调试理论
• 程序的两个功能

• 人类世界需求的载体
• 理解错需求→ bug

• 计算过程的精确描述
• 实现错误→ bug

• 调试 (debugging)
• 已知程序有 bug，如何找到？
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为什么debug那么困难
• 因为 bug 的触发经历了漫长的过程

• 需求→ 设计→ 代码→ Fault (bug) → Error (程序状态错) → Failure
• 我们只能观测到 failure (可观测的结果错)
• 我们可以检查状态的正确性 (但非常费时)
• 无法预知 bug 在哪里 (每一行“看起来”都挺对的)
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调试理论

• 调试理论：推论
• 为什么我们喜欢“单步调试”？

• 从一个假定正确的状态出发
• 每个语句的行为有限，容易判定是否是 error

• 为什么调试理论看起来没用？
• 因为判定程序状态的正确性非常困难

• (是否在调试 DP 题/图论算法时陷入时间黑洞？)
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调试理论（cont’d）
• 实际中的调试：通过观察程序执行的轨迹 (trace)

• 缩小错误状态 (error) 可能产生的位置
• 作出适当的假设
• 再进行细粒度的定位和诊断

• 最重要的两个工具
• printf à自定义log的trace

• + 灵活可控、能快速定位问题大概位置、适用于大型软件
• - 无法精确定位、大量的logs管理起来比较

• gdb à指令/语句级trace
• + 精确、指令级定位、任意查看程序内部状态
• - 耗费大量时间
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本学期课到此结束！

答疑环节
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